Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 92020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33231171

RESUMEN

In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects. We further show through brain PET scans of monkeys injected with radiolabeled recombinant human LCN2 (rh-LCN2) and autoradiography in baboon, macaque, and human brain sections, that LCN2 crosses the blood-brain barrier and localizes to the hypothalamus in primates. In addition, daily treatment of lean monkeys with rh-LCN2 decreases food intake by 21%, without overt side effects. These studies demonstrate the biology of LCN2 as a satiety factor and indicator and anorexigenic signal in primates. Failure to stimulate postprandial LCN2 in individuals with obesity may contribute to metabolic dysregulation, suggesting that LCN2 may be a novel target for obesity treatment.


Obesity has reached epidemic proportions worldwide and affects more than 40% of adults in the United States. People with obesity have a greater likelihood of developing type 2 diabetes, cardiovascular disease or chronic kidney disease. Changes in diet and exercise can be difficult to follow and result in minimal weight loss that is rarely sustained overtime. In fact, in people with obesity, weight loss can lower the metabolism leading to increased weight gain. New drugs may help some individuals achieve 5 to 10% weight loss but have side effects that prevent long-term use. Previous studies in mice show that a hormone called Lipocalin-2 (LCN2) suppresses appetite. It also reduces body weight and improves sugar metabolism in the animals. But whether this hormone has the same effects in humans or other primates is unclear. If it does, LCN2 might be a potential obesity treatment. Now, Petropoulou et al. show that LCN2 suppressed appetite in humans and monkeys. In human studies, LCN2 levels increased after a meal in individuals with normal weight or overweight, but not in individuals with obesity. Higher levels of LCN2 in a person's blood were also associated with a feeling of reduced hunger. Using brain scans, Petropoulou et al. showed that LCN2 crossed the blood-brain barrier in monkeys and bound to the hypothalamus, the brain center regulating appetite and energy balance. LCN2 also bound to human and monkey hypothalamus tissue in laboratory experiments. When injected into monkeys, the hormone suppressed food intake and lowered body weight without toxic effects in short-term studies. The experiments lay the initial groundwork for testing whether LCN2 might be a useful treatment for obesity. More studies in animals will help scientists understand how LCN2 works, which patients might benefit, how it would be given to patients and for how long. Clinical trials would also be needed to verify whether it is an effective and safe treatment for obesity.


Asunto(s)
Lipocalina 2/metabolismo , Macaca/metabolismo , Obesidad/metabolismo , Papio/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Ingestión de Alimentos , Humanos , Lipocalina 2/genética , Obesidad/diagnóstico por imagen , Obesidad/genética , Obesidad/fisiopatología , Tomografía de Emisión de Positrones , Transporte de Proteínas
2.
Arch Suicide Res ; 20(3): 451-62, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-26954509

RESUMEN

Cigarette smoking is associated with suicide and mood disorders and stimulates serotonin release. Tryptophan hydroxylase (TPH2) synthesizes serotonin and is over-expressed in suicides. We determined whether smoking is associated with TPH2 mRNA in suicides and controls. TPH2 mRNA was measured postmortem in the dorsal raphe nucleus (DRN) of controls (N = 26, 17 nonsmokers and nine smokers) and suicides (N = 23, 5 nonsmokers and 18 smokers). Psychiatric history was obtained by psychological autopsy. TPH2 mRNA was greater in suicide nonsmokers than suicide smokers, control smokers and control nonsmokers (p = 0.006). There was more TPH2 mRNA throughout the DRN. Smoking interferes with the TPH2 mRNA increase observed in suicide nonsmokers. The absence of altered TPH2 expression in non-suicide smokers suggests no pharmacological effect of smoking.


Asunto(s)
Fumar Cigarrillos/metabolismo , Núcleo Dorsal del Rafe/metabolismo , Nicotina/farmacología , Serotonina , Suicidio , Triptófano Hidroxilasa/genética , Adulto , Anciano , Anciano de 80 o más Años , Autopsia/métodos , Femenino , Estimulantes Ganglionares/farmacología , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Imagen Óptica/métodos , ARN Mensajero/genética , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Serotonina/biosíntesis , Serotonina/metabolismo , Estadística como Asunto
3.
Alcohol Clin Exp Res ; 38(7): 1894-901, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24942188

RESUMEN

BACKGROUND: Chronic alcohol use depletes brain serotonin (5-hydroxytryptamine [5-HT]), yet we previously found more tryptophan hydroxylase 2 (TPH2), the rate-limiting biosynthetic enzyme for 5-HT, in the dorsal raphe nucleus (DRN) of alcoholics. We sought to determine whether the increase in amount of TPH2 enzyme is associated with more TPH2 mRNA gene expression in the DRN of a new cohort of alcoholics and controls. METHODS: TPH2 mRNA and protein were measured by in situ hybridization and immunoautoradiography, respectively, in the DRN and median raphe nucleus (MRN) of age- and sex-matched pairs (n = 16) of alcoholics and nonpsychiatric controls. Alcohol use disorder diagnosis and medical, psychiatric, and family histories were obtained by psychological autopsy. Age and sex were covariates in the analyses. RESULTS: TPH2 mRNA in alcoholics was greater in the DRN and MRN compared to controls (DRN: controls: 3.6 ± 1.6, alcoholics: 4.8 ± 1.8 nCi/mg of tissue, F = 4.106, p = 0.02; MRN: controls: 2.6 ± 1.2, alcoholics: 3.5 ± 1.1 nCi/mg of tissue, F = 3.96, p = 0.024). The difference in TPH2 mRNA was present in all DRN subnuclei (dorsal [DRd]: 135%, interfascicular [DRif]: 139%, ventral [DRv]: 135%, ventrolateral [DRvl]: 136% of control p < 0.05) except the caudal subnucleus. Alcoholics also had more TPH2 protein in the DRN and MRN than controls (DRN: controls: 265 ± 47, alcoholics: 318 ± 47 µCi/g, F = 8.72, p = 0.001; MRN: controls: 250 ± 33, alcoholics: 345 ± 39 µCi/g, F = 7.78, p = 0.001). There is a positive correlation between TPH2 protein and mRNA expression in the DRN (r = 0.815, p < 0.001), suggesting that the higher amount of TPH2 protein is due to an increase in TPH2 gene expression. CONCLUSIONS: These findings suggest that greater TPH2 gene expression is the basis for more TPH2 protein in the DRN and MRN in alcoholics.


Asunto(s)
Alcoholismo/enzimología , Alcoholismo/genética , Regulación Enzimológica de la Expresión Génica/genética , Núcleos del Rafe Mesencefálico/enzimología , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo , Adulto , Alcohólicos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Triptófano Hidroxilasa/biosíntesis , Adulto Joven
4.
Bioorg Med Chem Lett ; 23(14): 4191-4, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23743281

RESUMEN

Radiosynthesis and in vitro evaluation of [(18)F](S)-1-(4-((5-cyclopropyl-1H-pyrazol-3-yl)amino)pyrrolo[2,1-f][1,2,4]triazin-2-yl)-N-(6-fluoropyridin-3-yl)-2-methylpyrrolidine-2-carboxamide ([(18)F]BMS-754807 or [(18)F]1) a specific IGF-1R inhibitor was performed. [(18)F]1 demonstrated specific binding in vitro to human cancer tissues. Synthesis of reference standard 1 and corresponding bromo derivative (1a), the precursor for radiolabeling were achieved from 2,4-dichloropyrrolo[2,1-f][1,2,4]triazine (4) in three steps with 50% overall yield. The radioproduct was obtained in 8% yield by reacting 1a with [(18)F]TBAF in DMSO at 170°C at high radiochemical purity and specific activity (1-2Ci/µmol, N=10). The proof of concept of IGF-IR imaging with [(18)F]1 was demonstrated by in vitro autoradiography studies using pathologically identified surgically removed grade IV glioblastoma, breast cancer and pancreatic tumor tissues. These studies indicate that [(18)F]1 can be a potential PET tracer for monitoring IGF-1R.


Asunto(s)
Pirazoles/química , Radiofármacos/síntesis química , Receptor IGF Tipo 1/antagonistas & inhibidores , Triazinas/química , Radioisótopos de Flúor/química , Humanos , Ligandos , Clasificación del Tumor , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Unión Proteica , Pirazoles/síntesis química , Radiografía , Radiofármacos/metabolismo , Receptor IGF Tipo 1/metabolismo , Triazinas/síntesis química
5.
Bioorg Med Chem Lett ; 22(15): 5104-7, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22749281

RESUMEN

Synthesis and in vitro evaluation of [(18)F](R)-N-(4-bromo-2-fluorophenyl)-7-((1-(2-fluoroethyl)piperidin-3-yl)methoxy)-6-methoxyquinazolin-4-amine ((R)-[(18)F]FEPAQ or [(18)F]1), a potential imaging agent for the VEGFR2, using phosphor image autoradiography are described. Synthesis of 2, the desfluoroethyl precursor for (R)-FEPAQ was achieved from t-butyl 3-(hydroxymethyl)piperidine-1-carboxylate (3) in five steps and in 50% yield. [(18)F]1 was synthesized by reaction of sodium salt of compound 2 with [(18)F]fluoroethyl tosylate in DMSO. The yield of [(18)F]1 was 20% (EOS based on [(18)F]F(-)) with >99% radiochemical purity and specific activity of 1-2 Ci/µmol (n=10). The total synthesis time was 75 min. The radiotracer selectively labeled VEGFR2 in slide-mounted sections of human brain and higher binding was found in surgically removed human glioblastoma sections as demonstrated by in vitro phosphor imager studies. These findings suggest [(18)F]1 may be a promising radiotracer for imaging VEGFR2 in brain using PET.


Asunto(s)
Ligandos , Quinazolinas/síntesis química , Radiofármacos/síntesis química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Encéfalo/metabolismo , Evaluación Preclínica de Medicamentos , Radioisótopos de Flúor/química , Glioma/diagnóstico , Glioma/metabolismo , Glioma/patología , Humanos , Tomografía de Emisión de Positrones , Quinazolinas/química , Radiofármacos/química , Estereoisomerismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA