Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell Mol Immunol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902348

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a main driver of immunosuppression in tumors. Understanding the mechanisms that determine the development and immunosuppressive function of these cells could provide new therapeutic targets to improve antitumor immunity. Here, using preclinical murine models, we discovered that exportin 1 (XPO1) expression is upregulated in tumor MDSCs and that this upregulation is induced by IL-6-induced STAT3 activation during MDSC differentiation. XPO1 blockade transforms MDSCs into T-cell-activating neutrophil-like cells, enhancing the antitumor immune response and restraining tumor growth. Mechanistically, XPO1 inhibition leads to the nuclear entrapment of ERK1/2, resulting in the prevention of ERK1/2 phosphorylation following the IL-6-mediated activation of the MAPK signaling pathway. Similarly, XPO1 blockade in human MDSCs induces the formation of neutrophil-like cells with immunostimulatory functions. Therefore, our findings revealed a critical role for XPO1 in MDSC differentiation and suppressive functions; exploiting these new discoveries revealed new targets for reprogramming immunosuppressive MDSCs to improve cancer therapeutic responses.

2.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398074

RESUMEN

PIEZO1 plays a crucial role in the human body as a mechanosensory ion channel. It has been demonstrated that PIEZO1 is important in tissue development and regulating many essential physiological processes. Studies have suggested that the PIEZO1 ion channel plays a role in invasion and progression in cancer; elevated levels of PIEZO1 have been correlated with increased migration in breast cancer cells, chemo-resistance and invasion in gastric cancer cells, and increased invasion of osteosarcoma cells. In addition, high PIEZO1 expression levels were correlated with a worse prognosis in glioma patients. On the other hand, studies in lung cancer have attributed high PIEZO1 levels to better patient outcomes. However, the clinical impact of PIEZO1 in breast cancer is not well characterized. Therefore, our goal was to determine the clinical relevance of PIEZO1 in breast cancer. An analysis of breast cancer data from The Cancer Genome Atlas (TCGA) was conducted to investigate PIEZO1 expression levels and correlation to survival, followed by validation in an independent dataset, GSE3494. We also performed gene set enrichment analysis (GSEA) and pathway enrichment analysis. We also analyzed the immune cell composition in breast tumors from TCGA through a CIBERSORT algorithm. Our results demonstrated that the PIEZO1 expression levels are higher in hormone-receptor (HR)-negative than in HR-positive cohorts. High PIEZO1 expression is correlated with a significant decrease in survival in HR-negative cohorts, especially in triple-negative breast cancer (TNBC), suggesting that PIEZO1 could be utilized as a prognostic biomarker in HR-negative breast cancer. GSEA showed that various signaling pathways associated with more invasive phenotypes and resistance to treatments, including epithelial-mesenchymal transition (EMT), hypoxia, and multiple signaling pathways, are enriched in high-PIEZO1 HR-negative tumors. Our results also demonstrated a decrease in CD8+ and CD4+ T cell infiltration in high-PIEZO1 HR-negative tumors. Further investigations are necessary to elucidate the mechanistic roles of PIEZO1 in HR-negative breast cancer.

3.
Front Oncol ; 13: 1215023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37260979
4.
Cell Rep ; 41(10): 111756, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476868

RESUMEN

Cancer cells encounter a hostile tumor microenvironment (TME), and their adaptations to metabolic stresses determine metastatic competence. Here, we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) is induced in hypoxic tumors acquiring metabolic plasticity and invasive phenotype. In mouse models of breast cancer, genetic ablation of PFKFB4 significantly delays distant organ metastasis, reducing local lymph node invasion by suppressing expression of invasive gene signature including integrin ß3. Photoacoustic imaging followed by metabolomics analyses of hypoxic tumors show that PFKFB4 drives metabolic flexibility, enabling rapid detoxification of reactive oxygen species favoring survival under selective pressure. Mechanistically, hypoxic induction triggers nuclear translocation of PFKFB4 accentuating non-canonical transcriptional activation of HIF-1α, and breast cancer patients with increased nuclear PFKFB4 in their tumors are found to be significantly associated with poor prognosis. Our findings imply that PFKFB4 induction is crucial for tumor cell adaptation in the hypoxic TME that determines metastatic competence.


Asunto(s)
Plasticidad de la Célula , Microambiente Tumoral , Animales , Ratones , Metabolómica
5.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077309

RESUMEN

BACKGROUND: Mechanically gated PIEZO channels lead to an influx of cations, activation of additional Ca2+ channels, and cell depolarization. This study aimed to investigate PIEZO2's role in breast cancer. METHODS: The clinical relevance of PIEZO2 expression in breast cancer patient was analyzed in a publicly available dataset. Utilizing PIEZO2 overexpressed breast cancer cells, and in vitro and in vivo experiments were conducted. RESULTS: High expression of PIEZO2 was correlated with a worse survival in triple-negative breast cancer (TNBC) but not in other subtypes. Increased PEIZO2 channel function was confirmed in PIEZO2 overexpressed cells after mechanical stimulation. PIEZO2 overexpressed cells showed increased motility and invasive phenotypes as well as higher expression of SNAIL and Vimentin and lower expression of E-cadherin in TNBC cells. Correspondingly, high expression of PIEZO2 was correlated with the increased expression of epithelial-mesenchymal transition (EMT)-related genes in a TNBC patient. Activated Akt signaling was observed in PIEZO2 overexpressed TNBC cells. PIEZO2 overexpressed MDA-MB-231 cells formed a significantly higher number of lung metastases after orthotopic implantation. CONCLUSION: PIEZO2 activation led to enhanced SNAIL stabilization through Akt activation. It enhanced Vimentin and repressed E-cadherin transcription, resulting in increased metastatic potential and poor clinical outcomes in TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Canales Iónicos/genética , Fenotipo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Vimentina/genética , Vimentina/metabolismo
6.
Int J Oncol ; 61(4)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35920189

RESUMEN

Proviral integration of Moloney virus 2 (PIM2) is a pro­survival factor of cancer cells and a possible therapeutic target in hematological malignancies. However, the attempts at inhibiting PIM2 have yielded underwhelming results in early clinical trials on hematological malignancies. Recently, a novel pan­PIM inhibitor, JP11646, was developed. The present study examined the utility of targeting PIM2 in multiple solid cancers and investigated the antitumor efficacy and the mechanisms of action of JP11646. When PIM2 expression was compared between normal and cancer tissues in publicly available datasets, PIM2 was found to be overexpressed in several types of solid cancers. PIM2 ectopic overexpression promoted tumor growth in in vivo xenograft breast cancer mouse models. The pan­PIM inhibitor, JP11646, suppressed in vitro cancer cell proliferation in a concentration­dependent manner in multiple types of cancers; a similar result was observed with siRNA­mediated PIM2 knockdown, as well as an increased in cell apoptosis. By contrast, another pan­PIM inhibitor, AZD1208, suppressed the expression of downstream PIM2 targets, but not PIM2 protein expression, corresponding to no apoptosis induction. As a mechanism of PIM2 protein degradation, it was found that the proteasome inhibitor, bortezomib, reversed the apoptosis induced by JP11646, suggesting that PIM2 degradation by JP11646 is proteasome­dependent. JP11646 exhibited significant anticancer efficacy with minimal toxicities at the examined doses and schedules in multiple in vivo mice xenograft solid cancer models. On the whole, the present study demonstrates that PIM2 promotes cancer progression in solid tumors. JP11646 induces apoptosis at least partly by PIM2 protein degradation and suppresses cancer cell proliferation in vitro and in vivo. JP11646 may thus be a possible treatment strategy for multiple types of solid cancers.


Asunto(s)
Neoplasias de la Mama , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores
7.
Cancer Gene Ther ; 29(11): 1791-1800, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35840667

RESUMEN

TAZ, one of the key effectors in the Hippo pathway, is often dysregulated in breast cancer, leading to cancer stemness, survival, and metastasis. However, the mechanistic bases of these tumor outcomes are incompletely understood and even less is known about the potential role played by the non-malignant cellular constituents of the tumor microenvironment (TME). Here, we revealed an inverse correlation between TAZ expression and survival in triple-negative breast cancer (TNBC), but not other subtypes of breast cancer. We found that TAZ knockdown in two murine TNBC tumor cell line models significantly inhibited tumor growth and metastasis in immune competent but not immune deficient hosts. RNA-seq analyses identified substantial alterations in immune components in TAZ knockdown tumors. Using mass cytometry analysis, we found that TAZ-deficiency altered the immune landscape of the TME leading to significant reductions in immune suppressive populations, namely myeloid-derived suppressor cells (MDSCs) and macrophages accompanied by elevated CD8+ T cell/myeloid cell ratios. Mechanistic studies demonstrated that TAZ-mediated tumor growth was MDSC-dependent in that MDSC depletion led to reduced tumor growth in control, but not TAZ-knockdown tumor cells. Altogether, we identified a novel non-cancer cell-autonomous mechanism by which tumor-intrinsic TAZ expression aids tumor progression. Thus, our findings advance an understanding of the crosstalk between tumor-derived TAZ expression and the immune contexture within the TME, which may lead to new therapeutic interventions for TNBC or other TAZ-driven cancers.


Asunto(s)
Neoplasias Mamarias Animales , Células Supresoras de Origen Mieloide , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Ratones , Línea Celular Tumoral , Neoplasias Mamarias Animales/genética , Células Supresoras de Origen Mieloide/fisiología , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/genética
8.
Am J Cancer Res ; 12(4): 1593-1605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530276

RESUMEN

HECT domain E3 ubiquitin ligase 1 (HECTD1) has been reported to be a negative regulator of epithelial-mesenchymal transition and to decrease breast cancer invasion and metastasis. However, the clinical significance and detailed role of HECTD1 in breast cancer remain elusive. We investigated the role of HECTD1 in two large breast cancer cohorts at our institution and The Cancer Genome Atlas using mRNA expression and bioinformatics analysis. We also examined the prognostic significance of HECTD1 mRNA expression by multivariate analysis and HECTD1 protein expression by immunohistochemistry using our cohort. HECTD1 mRNA expression was significantly lower in breast cancer tissues compared with those in adjacent normal tissues (P<0.001). HECTD1 mRNA expression levels also differed among breast cancer subtypes. Decreased HECTD1 mRNA expression was significantly associated with aggressive tumor characteristics, including large tumor size and high histological grade. HECTD1 mRNA expression was inversely associated with mitochondrial cellular respiratory function (oxidative phosphorylation (P<0.001, FDR q-value <0.001) the respiratory chain complex (P<0.001, FDR q-value <0.001) and reactive oxygen species (P<0.001, FDR q-value <0.001), but not with epithelial-mesenchymal transition, in breast cancer tissues. Low expression of HECTD1 mRNA was associated with shorter disease-free survival (log-rank: P=0.013) and overall survival (log-rank: P=0.038) in breast cancer patients. Multivariate analysis also identified low HECTD1 mRNA expression level as an independent risk factor for disease-free (hazard ratio: 1.54, 95% confidence interval: 1.11-2.13, P=0.009) and overall (hazard ratio: 1.50, 95% confidence interval: 1.01-2.24, P=0.046) survival among breast cancer patients. There was no association of HECTD1 protein expression with HECTD1 mRNA expression and prognosis. In conclusion, we identified low expression of HECTD1 mRNA as an independent poor prognostic factor in breast cancer and showed that HECTD1 mRNA expression was inversely correlated with genes involved in mitochondrial cellular respiratory function in breast cancer.

9.
Mol Cancer Ther ; 21(5): 786-798, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247903

RESUMEN

Neoadjuvant chemotherapy (NAC) followed by radical cystectomy is the standard-of-care for patients with muscle-invasive bladder cancer (MIBC). Defects in nucleotide excision repair (NER) are associated with improved responses to NAC. Excision Repair Cross-Complementation group 3 (ERCC3) is a key component of NER process. No NER inhibitors are available for treating patients with bladder cancer. We have developed an ex vivo cell-based assay of 6-4 pyrimidine-pyrimidinone (6-4PP) removal as a surrogate measure of NER capacity in human bladder cancer cell lines. The protein expression of ERCC3 was examined in human MIBC specimens and cell lines. Small molecule inhibitors were screened for NER inhibition in bladder cancer cell lines. Spironolactone was identified as a potent NER inhibitor. Combined effects of spironolactone with chemo-drugs were evaluated in vitro and in vivo. The efficacy between platinum and spironolactone on cytotoxicity was determined by combination index. A correlation between NER capacity and cisplatin sensitivity was demonstrated in a series of bladder cancer cell lines. Further, siRNA-mediated knockdown of ERCC3 abrogated NER capacity and enhanced cisplatin cytotoxicity. Spironolactone inhibited ERCC3 protein expression, abrogated NER capacity, and increased platinum-induced cytotoxicity in bladder cancer cells in vivo and in patient-derived organoids. Moreover, spironolactone exhibited the potential synergism effects with other clinical chemotherapy regimens in bladder cancer cell lines. Our data support the notion of repurposing spironolactone for improving the chemotherapy response of NAC in patients with MIBC. Further clinical trials are warranted to determine the safety and efficacy of spironolactone in combination with chemotherapy.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Quimioterapia Adyuvante , Cisplatino/farmacología , Cisplatino/uso terapéutico , Femenino , Humanos , Masculino , Terapia Neoadyuvante , Invasividad Neoplásica , Platino (Metal) , Espironolactona/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
10.
Am J Cancer Res ; 12(2): 793-804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35261802

RESUMEN

The phosphorylated histone variant, γ-H2AX, is known to play a key role in DNA damage repair. However, the clinical significance of H2AX mRNA expression in breast cancer remains unclear. Utilizing a bioinformatical approach, a total of 3594 breast cancer patients with clinical and transcriptomic data were investigated. Bioinformatical analysis showed that high expression of H2AX is associated with worse disease-free, disease-specific, and overall survival consistently in two independent cohorts. High H2AX expressing tumors were associated with upregulated DNA repair gene sets. Although H2AX was not predictive of chemotherapy response, it was significantly downregulated after effective chemotherapy or radio-chemotherapy. Notably, tumors with high H2AX expression were enriched for DNA replication and MYC targets gene sets, and associated with increased MKI67 expression, suggesting alterations in cell proliferation machinery. H2AX knockdown cells showed decreased cell proliferation as compared to the control cells. Finally, H2AX mRNA expression was higher in the metastatic clones as compared to the parental cells and in the metastatic tumors as compared to the primary tumors in patients, with higher H2AX mRNA expression found in advanced stage cancer patients. In conclusion, high H2AX mRNA expression is associated with increased DNA repair, cell proliferation, metastasis, and worse survival in breast cancer patients.

11.
Mol Cancer Ther ; 21(2): 271-281, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34815360

RESUMEN

Triple-negative breast cancer (TNBC) is a subtype of breast cancer lacking targetable biomarkers. TNBC is known to be most aggressive and when metastatic is often drug-resistant and uncurable. Biomarkers predicting response to therapy improve treatment decisions and allow personalized approaches for patients with TNBC. This study explores sulfated glycosaminoglycan (sGAG) levels as a predictor of TNBC response to platinum therapy. sGAG levels were quantified in three distinct TNBC tumor models, including cell line-derived, patient-derived xenograft (PDX) tumors, and isogenic models deficient in sGAG biosynthesis. The in vivo antitumor efficacy of Triplatin, a sGAG-directed platinum agent, was compared in these models with the clinical platinum agent, carboplatin. We determined that >40% of TNBC PDX tissue microarray samples have high levels of sGAGs. The in vivo accumulation of Triplatin in tumors as well as antitumor efficacy of Triplatin positively correlated with sGAG levels on tumor cells, whereas carboplatin followed the opposite trend. In carboplatin-resistant tumor models expressing high levels of sGAGs, Triplatin decreased primary tumor growth, reduced lung metastases, and inhibited metastatic growth in lungs, liver, and ovaries. sGAG levels served as a predictor of Triplatin sensitivity in TNBC. Triplatin may be particularly beneficial in treating patients with chemotherapy-resistant tumors who have evidence of residual disease after standard neoadjuvant chemotherapy. More effective neoadjuvant and adjuvant treatment will likely improve clinical outcome of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Glicosaminoglicanos/uso terapéutico , Humanos , Medicina de Precisión , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Am J Cancer Res ; 11(9): 4294-4307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659888

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis with few long-term survivors. This study aimed to establish a prognostic score using unique transcriptomic profiles of long-term survivors to be used as a patient selection tool for meaningful clinical intervention in PDAC. In TCGA PDAC cohort, 16 genes were significantly upregulated in the long-term survivor tumors. A prognostic score was established using these 16 genes by LASSO Cox regression, and PHKG1, HOXA4, ISL2, DMRT3 and TRA2A gene expressions were included in the score. The prognostic value was confirmed in both testing and validation cohorts. The characteristics of the high score tumor was investigated by bioinformatical approach. The high score tumor was associated with TP53 mutation but not with other commonly enhanced signaling pathways in PDAC. The high score tumor was associated with higher tumor mutational burden and unfavorable tumor microenvironment (TME), such as lower infiltration of CD8-positive T cells and dendritic cells, and less cell composition of mature blood vessels and fibroblasts. The high score tumor was also associated with enhanced cell proliferation and margin positivity after surgery. The impact of score component genes on the cell proliferation was investigated by in vitro experiments. Silencing of the score component genes promoted cell proliferation. In conclusion, the prognostic score predicted PDAC patient survival and was associated with cancer aggressiveness such as unfavorable TME and enhanced cell proliferation.

13.
Am J Cancer Res ; 11(6): 3320-3334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249465

RESUMEN

MiR-195 is a tumor suppressive microRNA in breast cancer. Its clinical relevance remains debatable as it has only been studied via in vitro experiments or small cohort studies. We analyzed a total of 2,038 patients in the TCGA and METABRIC cohorts to assess whether low miR-195 expressing tumors are associated with aggressive cancer characteristics and poor prognostic outcomes. The median cutoff of miR-195 expression was used to split the groups into miR-195 high and low groups. Low miR-19 expressing tumors demonstrated high cell proliferating features by enriching the gene sets associated with cell proliferation, MKI67 expression and pathological grade. One-third of the top target miR-195 genes were related to cell proliferation. Low miR-195 expressing tumors were associated with both pro-cancerous and anti-cancerous immune cells. Low miR-195 expressing tumors were associated with enhanced glycolysis and poor survival in ER-positive tumors, but not other subtypes of breast cancer. In conclusion, low expression of miR-195 in ER-positive breast cancer was associated with enhanced cancer cell proliferation, glycolysis, and worse overall survival.

14.
Cancers (Basel) ; 13(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072157

RESUMEN

Heterogeneity is the characteristic of breast tumors, making it difficult to understand the molecular mechanism. Alteration of gene expression in the primary tumor versus the metastatic lesion remains challenging for getting any specific targeted therapy. To better understand how gene expression profile changes during metastasis, we compare the primary tumor and distant metastatic tumor gene expression using primary breast tumors compared with its metastatic variant in animal models. Our RNA sequencing data from cells revealed that parental cell and the metastatic variant cell are different in gene expression while gene signature significantly altered during metastasis to distant organs than primary breast tumors. We found that secreted mediators encoding genes (ANGPTL7, MMP3, LCN2, S100A8, and ESM1) are correlated with poor prognosis in the clinical setting as divulged from METABRIC and TCGA-BRCA cohort data analysis.

15.
Ther Adv Med Oncol ; 13: 17588359211006680, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868461

RESUMEN

BACKGROUND: Cytotoxic T-lymphocyte (CTL) infiltration into tumor is a positive prognostic factor in breast cancer. High tumor mutational burden (TMB) is also considered as a predictor of tumor immunogenicity and response to immunotherapy. However, it is unclear whether the infiltration of functional CTL simply reflects the TMB or represents an independent prognostic value. METHODS: Utilizing The Cancer Genome Atlas (TCGA) breast cancer cohort, we established the Functional Hotness Score (FHS). The associations of FHS and breast cancer patient prognosis as well as distinct immunity markers were analyzed in a total of 3011 breast cancer patients using TCGA, METABRIC and metastatic breast cancer (MBC) cohort GSE110590. RESULTS: We established FHS, based on CD8A, GZMB and CXCL10 gene expression levels of bulk tumors, which delivered the best prognostic value among some gene combinations. Breast cancer patients with the high-FHS tumors showed significantly better survival. FHS was lower in the MBCs. Triple-negative breast cancer (TNBC) showed the highest FHS among subtypes. FHS predicted patient survival in hormone receptor (HR)-negative, especially in TNBC, but not in HR-positive breast cancer. FHS predicted patient prognosis independently in TNBC. The high-FHS TNBCs showed not only higher CD8+ T cell infiltration, but also enhanced broader type-1 anti-cancer immunity. The patients with the high-FHS tumors showed better prognosis not only in high-TMB tumors but also in low-TMB TNBCs. The combination of high-TMB with high-FHS identified a unique subset of patients who do not recur over time in TNBC. CONCLUSION: TNBCs with high FHS based on the expression levels of CD8A, GZMB and CXCL10 showed improved prognosis with enhanced anti-cancer immunity regardless of TMB. FHS constitutes an independent prognostic marker of survival, particularly robustly when combined with TMB in TNBC.

16.
Hepatol Res ; 51(5): 614-626, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33586816

RESUMEN

AIM: Sphingosine-1-phosphate (S1P) and ceramide are bioactive sphingolipids known to be important in regulating numerous processes involved in cancer progression. The aim of this study was to determine the absolute levels of sphingolipids in hepatocellular carcinoma (HCC) utilizing data obtained from surgical specimens. In addition, we explored the clinical significance of S1P in patients with HCC and the biological role of S1P in HCC cells. METHODS: Tumors and normal liver tissues were collected from 20 patients with HCC, and sphingolipids were measured by mass spectrometry. The Cancer Genome Atlas (TCGA) cohort was utilized to evaluate gene expression of enzymes related to sphingolipid metabolism. Immunohistochemistry of phospho-sphingosine kinase 1 (SphK1), an S1P-producing enzyme, was performed for 61 surgical specimens. CRISPR/Cas9-mediated SphK1 knockout cells were used to examine HCC cell biology. RESULTS: S1P levels were substantially higher in HCC tissue compared with normal liver tissue. Levels of other sphingolipids upstream of S1P in the metabolic cascade, such as sphingomyelin, monohexosylceramide and ceramide, were also considerably higher in HCC tissue. Enzymes involved in generating S1P and its precursor, ceramide, were found in higher levels in HCC compared with normal liver tissue. Immunohistochemical analysis found that phospho-SphK1 expression was associated with tumor size. Finally, in vitro assays indicated that S1P is involved in the aggressiveness of HCC cells. CONCLUSIONS: Sphingolipid levels, including S1P and ceramide, were elevated in HCC compared with surrounding normal liver tissue. Our findings suggest S1P plays an important role in HCC tumor progression, and further examination is warranted.

17.
Angew Chem Int Ed Engl ; 60(6): 3283-3289, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33174390

RESUMEN

1 H NMR spectroscopic studies on the 1:1 adduct of the pentasaccharide Fondaparinux (FPX) and the substitution-inert polynuclear platinum complex TriplatinNC show significant modulation of geometry around the glycosidic linkages of the FPX constituent monosaccharides. FPX is a valid model for the highly sulfated cell signalling molecule heparan sulfate (HS). The conformational ratio of the 1 C4 :2 S0 forms of the FPX residue IdoA(2S) is altered from ca. 35:65 (free FPX) to ca. 75:25 in the adduct; the first demonstration of a small molecule affecting conformational changes on a HS oligosaccharide. Functional consequences of such binding are suggested to be inhibition of HS cleavage in MDA-MB-231 triple-negative breast cancer (TNBC) cells. We further describe inhibition of metastasis by TriplatinNC in the TNBC 4T1 syngeneic tumour model. Our work provides insight into a novel approach for design of platinum drugs (and coordination compounds in general) with intrinsic anti-metastatic potential.


Asunto(s)
Antineoplásicos/química , Glicosaminoglicanos/química , Ácido Idurónico/química , Compuestos Organoplatinos/química , Platino (Metal)/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Teoría Funcional de la Densidad , Heparitina Sulfato/química , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/farmacología
18.
Cancer Res ; 81(1): 50-63, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115805

RESUMEN

Metabolic dysregulation is a known hallmark of cancer progression, yet the oncogenic signals that promote metabolic adaptations to drive metastatic cancer remain unclear. Here, we show that transcriptional repression of mitochondrial deacetylase sirtuin 3 (SIRT3) by androgen receptor (AR) and its coregulator steroid receptor coactivator-2 (SRC-2) enhances mitochondrial aconitase (ACO2) activity to favor aggressive prostate cancer. ACO2 promoted mitochondrial citrate synthesis to facilitate de novo lipogenesis, and genetic ablation of ACO2 reduced total lipid content and severely repressed in vivo prostate cancer progression. A single acetylation mark lysine258 on ACO2 functioned as a regulatory motif, and the acetylation-deficient Lys258Arg mutant was enzymatically inactive and failed to rescue growth of ACO2-deficient cells. Acetylation of ACO2 was reversibly regulated by SIRT3, which was predominantly repressed in many tumors including prostate cancer. Mechanistically, SRC-2-bound AR formed a repressive complex by recruiting histone deacetylase 2 to the SIRT3 promoter, and depletion of SRC-2 enhanced SIRT3 expression and simultaneously reduced acetylated ACO2. In human prostate tumors, ACO2 activity was significantly elevated, and increased expression of SRC-2 with concomitant reduction of SIRT3 was found to be a genetic hallmark enriched in prostate cancer metastatic lesions. In a mouse model of spontaneous bone metastasis, suppression of SRC-2 reactivated SIRT3 expression and was sufficient to abolish prostate cancer colonization in the bone microenvironment, implying this nuclear-mitochondrial regulatory axis is a determining factor for metastatic competence. SIGNIFICANCE: This study highlights the importance of mitochondrial aconitase activity in the development of advanced metastatic prostate cancer and suggests that blocking SRC-2 to enhance SIRT3 expression may be therapeutically valuable. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/1/50/F1.large.jpg.


Asunto(s)
Aconitato Hidratasa/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/secundario , Regulación Neoplásica de la Expresión Génica , Mitocondrias/enzimología , Neoplasias de la Próstata/patología , Sirtuina 3/metabolismo , Aconitato Hidratasa/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Coactivador 3 de Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Sirtuina 3/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Clin Med ; 9(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887437

RESUMEN

Background: H2AX can be of prognostic value in breast cancer, since in advanced stage patients with high levels, there was an association with worse overall survival (OS). However, the clinical relevance of H2AX in ovarian cancer (OC) remains to be elucidated. Methods: OC H2AX expression studied using the TCGA/GTEX datasets. Subsequently, patients were classified as either high or low in terms of H2AX expression to compare OS and perform gene set enrichment. qRT-PCR validated in-silico H2AX findings followed by immunohistochemistry on a tissue microarray. The association between single nucleotide polymorphisms in the area of H2AX; prevalence and five-year OC survival was tested in samples from the UK Biobank. Results: H2AX was significantly overexpressed in OCs compared to normal tissues, with higher expression associated with better OS (p = 0.010). Gene Set Enrichment Analysis demonstrated gene sets involved in G2/M checkpoint, DNA repair mTORC1 signalling were enriched in the H2AX highly expressing OCs. Polymorphisms in the area around the gene were associated with both OC prevalence (rs72997349-C, p = 0.005) and worse OS (rs10790282-G, p = 0.011). Finally, we demonstrated that H2AX gene expression correlated with γ-H2AX staining in vitro. Conclusions: Our findings suggest that H2AX can be a novel prognostic biomarker for OC.

20.
J Surg Res ; 256: 645-656, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32810665

RESUMEN

BACKGROUND: Although previous experiments have implicated sphingosine-1-phosphate (S1P) as a links between immune reactions and cancer progression, the exact mechanism of this interaction has not comprehensively studied in clinical human samples. This study sought to evaluate the S1P regulation by sphingosine kinase 1 (SPHK1), an S1P-producing enzyme, in the immunity/immuno-reactivity of clinical human breast cancer surgical specimens. METHODS: S1P levels were examined in tumor, peritumoral, and normal human breast samples using mass spectrometry. Genomics Data Commons data portal of The Cancer Genome Atlas cohort was used to assess the expression of S1P-related and immune-related genes. RESULTS: S1P levels were significantly higher in tumor samples compared to peritumoral (P < 0.05) or normal human breast samples (P < 0.001). SPHK1 gene expression was elevated in tumoral samples compared to normal breast samples (P < 0.01). Furthermore, the elevated expression of SPHK1 in breast cancer tissue was associated with an increased expression of the different kinds of immune-related genes, such as CD68, CD163, CD4, and FOXP3 (forkhead box P3), in HER2-negative breast cancer. Network analysis showed the central role of SPHK1 in the interaction of S1P signaling and expression of immune cell-related proteins. CONCLUSIONS: We demonstrated that S1P is mainly produced by tumor tissue, rather than peritumoral tissue, in breast cancer patients. Our data revealed the involvement of S1P signaling in the regulation of immune-related genes, suggesting the links between S1P and complicated immune-cancer interactions in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/inmunología , Mama/patología , Regulación Neoplásica de la Expresión Génica/inmunología , Lisofosfolípidos/análisis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Estudios de Cohortes , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunohistoquímica , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/análisis , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Espectrometría de Masa por Ionización de Electrospray , Esfingosina/análisis , Esfingosina/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA