Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
2.
EBioMedicine ; 99: 104945, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142637

RESUMEN

BACKGROUND: Lung damage in severe COVID-19 is highly heterogeneous however studies with dedicated spatial distinction of discrete temporal phases of diffuse alveolar damage (DAD) and alternate lung injury patterns are lacking. Existing studies have also not accounted for progressive airspace obliteration in cellularity estimates. We used an imaging mass cytometry (IMC) analysis with an airspace correction step to more accurately identify the cellular immune response that underpins the heterogeneity of severe COVID-19 lung disease. METHODS: Lung tissue was obtained at post-mortem from severe COVID-19 deaths. Pathologist-selected regions of interest (ROIs) were chosen by light microscopy representing the patho-evolutionary spectrum of DAD and alternate disease phenotypes were selected for comparison. Architecturally normal SARS-CoV-2-positive lung tissue and tissue from SARS-CoV-2-negative donors served as controls. ROIs were stained for 40 cellular protein markers and ablated using IMC before segmented cells were classified. Cell populations corrected by ROI airspace and their spatial relationships were compared across lung injury patterns. FINDINGS: Forty patients (32M:8F, age: 22-98), 345 ROIs and >900k single cells were analysed. DAD progression was marked by airspace obliteration and significant increases in mononuclear phagocytes (MnPs), T and B lymphocytes and significant decreases in alveolar epithelial and endothelial cells. Neutrophil populations proved stable overall although several interferon-responding subsets demonstrated expansion. Spatial analysis revealed immune cell interactions occur prior to microscopically appreciable tissue injury. INTERPRETATION: The immunopathogenesis of severe DAD in COVID-19 lung disease is characterised by sustained increases in MnPs and lymphocytes with key interactions occurring even prior to lung injury is established. FUNDING: UK Research and Innovation/Medical Research Council through the UK Coronavirus Immunology Consortium, Barbour Foundation, General Sir John Monash Foundation, Newcastle University, JGW Patterson Foundation, Wellcome Trust.


Asunto(s)
COVID-19 , Lesión Pulmonar , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , COVID-19/patología , Lesión Pulmonar/patología , Células Endoteliales , SARS-CoV-2 , Pulmón/patología
3.
Front Immunol ; 13: 862104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003389

RESUMEN

Introduction: Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods: Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results: Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion: Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.


Asunto(s)
Leishmania donovani , Animales , Ácido Araquidónico/metabolismo , Granuloma/patología , Leishmania donovani/fisiología , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Front Microbiol ; 12: 709728, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489899

RESUMEN

Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are often characterized by focal inflammation occurring in one or more distinct tissues. Tissue-specific outcomes of infection are also evident in many infectious diseases, suggesting that the local microenvironment may instruct complex and diverse innate and adaptive cellular responses resulting in locally distinct molecular signatures. In turn, these molecular signatures may both drive and be responsive to local metabolic changes in immune as well as non-immune cells, ultimately shaping the outcome of infection. Given the spatial complexity of immune and inflammatory responses during infection, it is evident that understanding the spatial organization of transcripts, proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of local immunity. Molecular imaging techniques like mass spectrometry imaging and spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can define detailed metabolic signatures at the microenvironmental level. Moreover, a successful complementation of these two imaging techniques would allow multi-omics analyses of inflammatory microenvironments to facilitate understanding of disease pathogenesis and identify novel targets for therapeutic intervention. Here, we describe strategies for downstream data analysis of spatially resolved multi-omics data and, using leishmaniasis as an exemplar, describe how such analysis can be applied in a disease-specific context.

5.
Wellcome Open Res ; 6: 83, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34286101

RESUMEN

Background: Polyparasitism is commonplace in countries where endemicity for multiple parasites exists, and studies in animal models of coinfection have made significant inroads into understanding the impact of often competing demands on the immune system. However, few studies have addressed how previous exposure to and treatment for one infection impacts a subsequent heterologous infection.   Methods: We used a C57BL/6 mouse model of drug-treated Leishmania donovani infection followed by experimental Plasmodium chabaudi AS malaria, focusing on hematological dysfunction as a common attribute of both infections. We measured parasite burden, blood parameters associated with anemia and thrombocytopenia, and serum thrombopoietin. In addition, we quantified macrophage iNOS expression through immunohistological analysis of the liver and spleen.   Results: We found that the thrombocytopenia and anemia that accompanies primary L. donovani infection was rapidly reversed following single dose AmBisome® treatment, along with multiple other markers associated with immune activation (including restoration of tissue microarchitecture and reduced macrophage iNOS expression). Compared to naive mice, mice cured of previous VL showed comparable albeit delayed clinical responses (including peak parasitemia and anemia) to P. chabaudi AS infection. Thrombocytopenia was also evident in these sequentially infected mice, consistent with a decrease in circulating levels of thrombopoietin. Architectural changes to the spleen were also comparable in sequentially infected mice compared to those with malaria alone. Conclusions: Our data suggest that in this sequential infection model, previously-treated VL has limited impact on the subsequent development of malaria, but this issue deserves further attention in models of more severe disease or through longitudinal population studies in humans.

6.
Mol Ther ; 29(7): 2366-2377, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-33781913

RESUMEN

Post-kala-azar dermal leishmaniasis (PKDL) is a chronic, stigmatizing skin condition occurring frequently after apparent clinical cure from visceral leishmaniasis. Given an urgent need for new treatments, we conducted a phase IIa safety and immunogenicity trial of ChAd63-KH vaccine in Sudanese patients with persistent PKDL. LEISH2a (ClinicalTrials.gov: NCT02894008) was an open-label three-phase clinical trial involving sixteen adult and eight adolescent patients with persistent PKDL (median duration, 30 months; range, 6-180 months). Patients received a single intramuscular vaccination of 1 × 1010 viral particles (v.p.; adults only) or 7.5 × 1010 v.p. (adults and adolescents), with primary (safety) and secondary (clinical response and immunogenicity) endpoints evaluated over 42-120 days follow-up. AmBisome was provided to patients with significant remaining disease at their last visit. ChAd63-KH vaccine showed minimal adverse reactions in PKDL patients and induced potent innate and cell-mediated immune responses measured by whole-blood transcriptomics and ELISpot. 7/23 patients (30.4%) monitored to study completion showed >90% clinical improvement, and 5/23 (21.7%) showed partial improvement. A logistic regression model applied to blood transcriptomic data identified immune modules predictive of patients with >90% clinical improvement. A randomized controlled trial to determine whether these clinical responses were vaccine-related and whether ChAd63-KH vaccine has clinical utility is underway.


Asunto(s)
Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Leishmania/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Leishmaniasis Cutánea/prevención & control , Vacunas Sintéticas/administración & dosificación , Adenovirus de los Simios/genética , Adolescente , Adulto , Niño , Femenino , Humanos , Inyecciones Intramusculares , Leishmania/aislamiento & purificación , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Masculino , Pronóstico , Vacunas Sintéticas/inmunología , Adulto Joven
7.
ERJ Open Res ; 7(1)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33748262

RESUMEN

BACKGROUND: In sarcoidosis, blood monocytes, circulating precursors of granuloma macrophages, display enhanced inflammatory cytokine production, reduced expression of the regulatory (inhibitory) receptor CD200R, and altered subsets defined by CD14 and CD16. Regulatory receptors serve to dampen monocyte and macrophage inflammatory responses. We investigated the relationship between monocyte subsets and regulatory receptor expression in sarcoidosis. METHODS: Multiparameter flow cytometry was used to perform detailed analyses of cell surface regulatory molecules on freshly isolated blood immune cells from patients with chronic pulmonary sarcoidosis and age-matched healthy controls. RESULTS: 25 patients with chronic pulmonary sarcoidosis (median duration of disease 22 months) who were not taking oral corticosteroids or other immunomodulators were recruited. Nonclassical monocytes were expanded in sarcoidosis and exhibited significantly lower expression of regulatory receptors CD200R, signal regulatory protein-α and CD47 than classical or intermediate monocytes. In sarcoidosis, all three monocyte subsets had significantly reduced CD200R and CD47 expression compared with healthy controls. A dichotomous distribution of CD200R was seen on classical and intermediate monocytes in the sarcoidosis population, with 14 out of 25 (56%) sarcoidosis patients having a CD200Rlow phenotype and 11 out of 25 (44%) having a CD200Rhigh phenotype. These distinct sarcoidosis monocyte phenotypes remained consistent over time. CONCLUSIONS: Nonclassical monocytes, which are expanded in sarcoidosis, express very low levels of regulatory receptors. Two distinct and persistent phenotypes of CD200R expression in classical and intermediate monocytes could be evaluated as sarcoidosis biomarkers.

8.
Blood Adv ; 5(6): 1627-1637, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33710338

RESUMEN

Visceral leishmaniasis is an important yet neglected parasitic disease caused by infection with Leishmania donovani or L infantum. Disease manifestations include fever, weight loss, hepatosplenomegaly, immune dysregulation, and extensive hematological complications. Thrombocytopenia is a dominant hematological feature seen in both humans and experimental models, but the mechanisms behind this infection-driven thrombocytopenia remain poorly understood. Using a murine model of experimental visceral leishmaniasis (EVL), we demonstrated a progressive decrease in platelets from day 14 after infection, culminating in severe thrombocytopenia by day 28. Plasma thrombopoietin (TPO) levels were reduced in infected mice, at least in part because of the alterations in the liver microenvironment associated with granulomatous inflammation. Bone marrow (BM) megakaryocyte cytoplasmic maturation was significantly reduced. In addition to a production deficit, we identified significant increases in platelet clearance. L donovani-infected splenectomized mice were protected from thrombocytopenia compared with sham operated infected mice and had a greater response to exogenous TPO. Furthermore, infection led to higher levels of platelet opsonization and desialylation, both associated with platelet clearance in spleen and liver, respectively. Critically, these changes could be reversed rapidly by drug treatment to reduce parasite load or by administration of TPO agonists. In summary, our findings demonstrate that the mechanisms underpinning thrombocytopenia in EVL are multifactorial and reversible, with no obvious residual damage to the BM microenvironment.


Asunto(s)
Leishmaniasis Visceral , Trombocitopenia , Animales , Modelos Animales de Enfermedad , Leishmaniasis Visceral/complicaciones , Leishmaniasis Visceral/tratamiento farmacológico , Megacariocitos , Ratones , Trombopoyetina
9.
Front Immunol ; 12: 795554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975901

RESUMEN

Increasing evidence suggests that in hosts infected with parasites of the Leishmania donovani complex, transmission of infection to the sand fly vector is linked to parasite repositories in the host skin. However, a detailed understanding of the dispersal (the mechanism of spread) and dispersion (the observed state of spread) of these obligatory-intracellular parasites and their host phagocytes in the skin is lacking. Using endogenously fluorescent parasites as a proxy, we apply image analysis combined with spatial point pattern models borrowed from ecology to characterize dispersion of parasitized myeloid cells (including ManR+ and CD11c+ cells) and predict dispersal mechanisms in a previously described immunodeficient model of L. donovani infection. Our results suggest that after initial seeding of infection in the skin, heavily parasite-infected myeloid cells are found in patches that resemble innate granulomas. Spread of parasites from these initial patches subsequently occurs through infection of recruited myeloid cells, ultimately leading to self-propagating networks of patch clusters. This combination of imaging and ecological pattern analysis to identify mechanisms driving the skin parasite landscape offers new perspectives on myeloid cell behavior following parasitism by L. donovani and may also be applicable to elucidating the behavior of other intracellular tissue-resident pathogens and their host cells.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/parasitología , Microscopía Confocal , Microscopía Fluorescente , Células Mieloides/parasitología , Piel/parasitología , Análisis Espacial , Animales , Antígenos CD11/metabolismo , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Interacciones Huésped-Parásitos , Insectos Vectores/parasitología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/transmisión , Receptor de Manosa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Teóricos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Phlebotomus/parasitología , Piel/inmunología , Piel/metabolismo
10.
Front Physiol ; 11: 568087, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041864

RESUMEN

Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.

11.
EBioMedicine ; 55: 102748, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361248

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL) treatment in HIV patients very often fails and is followed by high relapse and case-fatality rates. Hence, treatment efficacy assessment is imperative but based on invasive organ aspiration for parasite detection. In the search of a less-invasive alternative and because the host immune response is pivotal for treatment outcome in immunocompromised VL patients, we studied changes in the whole blood transcriptional profile of VL-HIV patients during treatment. METHODS: Embedded in a clinical trial in Northwest Ethiopia, RNA-Seq was performed on whole blood samples of 28 VL-HIV patients before and after completion of a 29-day treatment regimen of AmBisome or AmBisome/miltefosine. Pathway analyses were combined with a machine learning approach to establish a clinically-useful 4-gene set. FINDINGS: Distinct signatures of differentially expressed genes between D0 and D29 were identified for patients who failed treatment and were successfully treated. Pathway analyses in the latter highlighted a downregulation of genes associated with host cellular activity and immunity, and upregulation of antimicrobial peptide activity in phagolysosomes. No signs of disease remission nor pathway enrichment were observed in treatment failure patients. Next, we identified a 4-gene pre-post signature (PRSS33, IL10, SLFN14, HRH4) that could accurately discriminate treatment outcome at end of treatment (D29), displaying an average area-under-the-ROC-curve of 0.95 (CI: 0.75-1.00). INTERPRETATION: A simple blood-based signature thus holds significant promise to facilitate treatment efficacy monitoring and provide an alternative test-of-cure to guide patient management in VL-HIV patients. FUNDING: Project funding was provided by the AfricoLeish project, supported by the European Union Seventh Framework Programme (EU FP7).


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/genética , Transcriptoma , Adulto , Anfotericina B/uso terapéutico , Coinfección , Endorribonucleasas/sangre , Endorribonucleasas/genética , Femenino , Regulación de la Expresión Génica , VIH/patogenicidad , Infecciones por VIH/virología , Interacciones Huésped-Patógeno/genética , Humanos , Interleucina-10/sangre , Interleucina-10/genética , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/patogenicidad , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/patología , Masculino , Fagosomas/metabolismo , Fagosomas/parasitología , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Receptores Histamínicos H4/sangre , Receptores Histamínicos H4/genética , Recurrencia , Serina Proteasas/sangre , Serina Proteasas/genética , Insuficiencia del Tratamiento
12.
J Immunol ; 204(11): 2949-2960, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32321759

RESUMEN

Despite extensive mapping of long noncoding RNAs in immune cells, their function in vivo remains poorly understood. In this study, we identify over 100 long noncoding RNAs that are differentially expressed within 24 h of Th1 cell activation. Among those, we show that suppression of Malat1 is a hallmark of CD4+ T cell activation, but its complete deletion results in more potent immune responses to infection. This is because Malat1-/- Th1 and Th2 cells express lower levels of the immunosuppressive cytokine IL-10. In vivo, the reduced CD4+ T cell IL-10 expression in Malat1-/- mice underpins enhanced immunity and pathogen clearance in experimental visceral leishmaniasis (Leishmania donovani) but more severe disease in a model of malaria (Plasmodium chabaudi chabaudi AS). Mechanistically, Malat1 regulates IL-10 through enhancing expression of Maf, a key transcriptional regulator of IL-10 Maf expression correlates with Malat1 in single Ag-specific Th cells from P. chabaudi chabaudi AS-infected mice and is downregulated in Malat1-/- Th1 and Th2 cells. The Malat1 RNA is responsible for these effects, as antisense oligonucleotide-mediated inhibition of Malat1 also suppresses Maf and IL-10 levels. Our results reveal that through promoting expression of the Maf/IL-10 axis in effector Th cells, Malat1 is a nonredundant regulator of mammalian immunity.


Asunto(s)
Interleucina-10/metabolismo , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Proteínas Proto-Oncogénicas c-maf/metabolismo , ARN Largo no Codificante/genética , Células TH1/inmunología , Células Th2/inmunología , Animales , Femenino , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Inmunidad/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/genética , Regulación hacia Arriba
13.
J Neuroinflammation ; 17(1): 87, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192526

RESUMEN

BACKGROUND: An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS: Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS: These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Microscopía Intravital/métodos , Microglía , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microambiente Tumoral/fisiología
14.
Parasit Vectors ; 13(1): 9, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915065

RESUMEN

BACKGROUND: Prostaglandins (PG) are lipid mediators derived from arachidonic acid metabolism. They are involved in cellular processes such as inflammation and tissue homeostasis. PG production is not restricted to multicellular organisms. Trypanosomatids also synthesize several metabolites of arachidonic acid. Nevertheless, their biological role in these early-branching parasites and their role in host-parasite interaction are not well elucidated. Prostaglandin F2α synthase (PGF2S) has been observed in the Leishmania braziliensis secreted proteome and in L. donovani extracellular vesicles. Furthermore, we previously reported a positive correlation between L. braziliensis PGF2S (LbrPGF2S) expression and pathogenicity in mice. METHODS: LbrPGF2S gene expression and PGF2α synthesis in promastigotes were detected and quantified by western blotting and EIA assay kit, respectively. To investigate LbrPGF2S localization in amastigotes during bone marrow-derived macrophage infection, parasites expressing mCherry-LbrPGF2S were generated and followed by time-lapse imaging for 48 h post-infection. PGF2S homolog sequences from Leishmania and humans were analyzed in silico using ClustalW on Geneious v6 and EMBOSS Needle. RESULTS: Leishmania braziliensis promastigotes synthesize prostaglandin F2α in the presence of arachidonic acid, with peak production in the stationary growth phase under heat stress. LbrPGF2S is a cytoplasmic protein enriched in the secretory site of the parasite cell body, the flagellar pocket. It is an enzyme constitutively expressed throughout promastigote development, but overexpression of LbrPGF2S leads to an increase of infectivity in vitro. The data suggest that LbrPGF2S may be released from intracellular amastigotes into the cytoplasm of bone marrow-derived macrophages over a 48-hour infection period, using time-lapse microscopy and mCherry-PGF2S (mChPGF2S)-expressing parasites. CONCLUSIONS: LbrPGF2S, a parasite-derived protein, is targeted to the host cell cytoplasm. The putative transfer of this enzyme, involved in pro-inflammatory lipid mediator synthesis, to the host cell suggests a potential role in host-parasite interaction and may partially explain the increased pathogenicity associated with overexpression of LbrPGF2S in L. braziliensis. Our data provide valuable insights to help understand the importance of parasite-derived lipid mediators in pathogenesis.


Asunto(s)
Leishmania braziliensis/enzimología , Leishmaniasis Cutánea/parasitología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Interacciones Huésped-Parásitos , Humanos , Leishmania braziliensis/genética , Leishmania braziliensis/crecimiento & desarrollo , Leishmania braziliensis/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandinas/biosíntesis , Proteínas Protozoarias/genética
15.
Front Immunol ; 10: 1957, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31475014

RESUMEN

Previous studies infecting global IL-4Rα-/-, IL-4-/-, and IL-13-/-mice on a BALB/c background with the visceralizing parasite Leishmania donovani have shown that the T helper 2 cytokines, IL-4, and IL-13, play influential but not completely overlapping roles in controlling primary infection. Subsequently, using macrophage/neutrophil-specific IL-4Rα deficient BALB/c mice, we demonstrated that macrophage/neutrophil unresponsiveness to IL-4 and IL-13 did not have a detrimental effect during L. donovani infection. Here we expand on these findings and show that CD4+ T cell-(Lckcre), as well as pan T cell-(iLckcre) specific IL-4Rα deficient mice, on a BALB/c background, unlike global IL-4Rα deficient mice, are also not adversely affected in terms of resistance to primary infection with L. donovani. Our analysis suggested only a transient and tissue specific impact on disease course due to lack of IL-4Rα on T cells, limited to a reduced hepatic parasite burden at day 30 post-infection. Consequently, the protective role(s) demonstrated for IL-4 and IL-13 during L. donovani infection are mediated by IL-4Rα-responsive cell(s) other than macrophages, neutrophils and T cells.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Interleucina-4/genética , Leishmania major/inmunología , Leishmaniasis Visceral/inmunología , Receptores de Superficie Celular/genética , Animales , Cricetinae , Interleucina-13/inmunología , Interleucina-4/inmunología , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neutrófilos/inmunología , Receptores de Superficie Celular/metabolismo , Transducción de Señal/inmunología
16.
Wellcome Open Res ; 4: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31976381

RESUMEN

Background: Liposomal amphotericin B (AmBisome®) as a treatment modality for visceral leishmaniasis (VL) has had significant impact on patient care in some but not all regions where VL is endemic.  As the mode of action of AmBisome® in vivo is poorly understood, we compared the tissue-specific transcriptome in drug-treated vs untreated mice with experimental VL.    Methods:  BALB/c mice infected with L. donovani were treated with 8mg/kg AmBisome®, resulting in parasite elimination from liver and spleen over a 7-day period. At day 1 and day 7 post treatment (R x+1 and R x+7), transcriptomic profiling was performed on spleen and liver tissue from treated and untreated mice and uninfected mice.  BALB/c mice infected with M. bovis BCG (an organism resistant to amphotericin B) were analysed to distinguish between direct effects of AmBisome® and those secondary to parasite death.   Results: AmBisome® treatment lead to rapid parasitological clearance.  At R x+1, spleen and liver displayed only 46 and 88 differentially expressed (DE) genes (P<0.05; 2-fold change) respectively. In liver, significant enrichment was seen for pathways associated with TNF, fatty acids and sterol biosynthesis.  At R x+7, the number of DE genes was increased (spleen, 113; liver 400).  In spleen, these included many immune related genes known to be involved in anti-leishmanial immunity. In liver, changes in transcriptome were largely accounted for by loss of granulomas.   PCA analysis indicated that treatment only partially restored homeostasis.  Analysis of BCG-infected mice treated with AmBisome® revealed a pattern of immune modulation mainly targeting macrophage function.   Conclusions: Our data indicate that the tissue response to AmBisome® treatment varies between target organs and that full restoration of homeostasis is not achieved at parasitological cure.  The pathways required to restore homeostasis deserve fuller attention, to understand mechanisms associated with treatment failure and relapse and to promote more rapid restoration of immune competence.

17.
Front Immunol ; 9: 637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29636754

RESUMEN

Cellular activation in trans by interferons, cytokines, and chemokines is a commonly recognized mechanism to amplify immune effector function and limit pathogen spread. However, an optimal host response also requires that collateral damage associated with inflammation is limited. This may be particularly so in the case of granulomatous inflammation, where an excessive number and/or excessively florid granulomas can have significant pathological consequences. Here, we have combined transcriptomics, agent-based modeling, and in vivo experimental approaches to study constraints on hepatic granuloma formation in a murine model of experimental leishmaniasis. We demonstrate that chemokine production by non-infected Kupffer cells in the Leishmania donovani-infected liver promotes competition with infected KCs for available iNKT cells, ultimately inhibiting the extent of granulomatous inflammation. We propose trans-activation for chemokine production as a novel broadly applicable mechanism that may operate early in infection to limit excessive focal inflammation.


Asunto(s)
Granuloma/inmunología , Inflamación/inmunología , Macrófagos del Hígado/fisiología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , Hígado/inmunología , Macrófagos/fisiología , Células T Asesinas Naturales/inmunología , Animales , Células Cultivadas , Quimiocinas/genética , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Análisis de Sistemas , Activación Transcripcional
18.
Front Immunol ; 9: 2958, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619317

RESUMEN

Human visceral leishmaniasis, a parasitic disease of major public health importance in developing countries, is characterized by variable degrees of severity of anemia, but the mechanisms underlying this change in peripheral blood have not been thoroughly explored. Here, we used an experimental model of visceral leishmaniasis in C57BL/6 mice to explore the basis of anemia following infection with Leishmania donovani. 28 days post-infection, mice showed bone marrow dyserythropoiesis by myelogram, with a reduction of TER119+ CD71-/+ erythroblasts. Reduction of medullary erythropoiesis coincided with loss of CD169high bone marrow stromal macrophages and a reduction of CXCL12-expressing stromal cells. Although the spleen is a site of extramedullary erythropoiesis and erythrophagocytosis, splenectomy did not impact the extent of anemia or affect the repression of medullary hematopoiesis that was observed in infected mice. In contrast, these changes in bone marrow erythropoiesis were not evident in B6.Rag2-/- mice, but could be fully reconstituted by adoptive transfer of IFNγ-producing but not IFNγ-deficient CD4+ T cells, mimicking the expansion of IFNγ-producing CD4+ T cells that occurs during infection in wild type mice. Collectively, these data indicate that anemia during experimental murine visceral leishmaniasis can be driven by defects associated with the bone marrow erythropoietic niche, and that this represents a further example of CD4+ T cell-mediated immunopathology affecting hematopoietic competence.


Asunto(s)
Anemia/etiología , Linfocitos T CD4-Positivos/inmunología , Eritropoyesis/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Traslado Adoptivo , Animales , Médula Ósea/fisiología , Linfocitos T CD4-Positivos/trasplante , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo , Leishmaniasis Visceral/complicaciones , Leishmaniasis Visceral/parasitología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células del Estroma/fisiología
19.
PLoS Pathog ; 13(7): e1006465, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28671989

RESUMEN

Visceral leishmaniasis is associated with significant changes in hematological function but the mechanisms underlying these changes are largely unknown. In contrast to naïve mice, where most long-term hematopoietic stem cells (LT-HSCs; LSK CD150+ CD34- CD48- cells) in bone marrow (BM) are quiescent, we found that during Leishmania donovani infection most LT-HSCs had entered cell cycle. Loss of quiescence correlated with a reduced self-renewal capacity and functional exhaustion, as measured by serial transfer. Quiescent LT-HSCs were maintained in infected RAG2 KO mice, but lost following adoptive transfer of IFNγ-sufficient but not IFNγ-deficient CD4+ T cells. Using mixed BM chimeras, we established that IFNγ and TNF signalling pathways converge at the level of CD4+ T cells. Critically, intrinsic TNF signalling is required for the expansion and/or differentiation of pathogenic IFNγ+CD4+ T cells that promote the irreversible loss of BM function. These findings provide new insights into the pathogenic potential of CD4+ T cells that target hematopoietic function in leishmaniasis and perhaps other infectious diseases where TNF expression and BM dysfunction also occur simultaneously.


Asunto(s)
Células de la Médula Ósea/citología , Linfocitos T CD4-Positivos/citología , Células Madre Hematopoyéticas/citología , Leishmania donovani/fisiología , Leishmaniasis Visceral/fisiopatología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Ciclo Celular , Proliferación Celular , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética
20.
PLoS Negl Trop Dis ; 11(5): e0005527, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28498840

RESUMEN

BACKGROUND: Visceral leishmaniasis (VL or kala azar) is the most serious form of human leishmaniasis, responsible for over 20,000 deaths annually, and post kala azar dermal leishmaniasis (PKDL) is a stigmatizing skin condition that often occurs in patients after successful treatment for VL. Lack of effective or appropriately targeted cell mediated immunity, including CD8+ T cell responses, underlies the progression of VL and progression to PKDL, and can limit the therapeutic efficacy of anti-leishmanial drugs. Hence, in addition to the need for prophylactic vaccines against leishmaniasis, the development of therapeutic vaccines for use alone or in combined immuno-chemotherapy has been identified as an unmet clinical need. Here, we report the first clinical trial of a third-generation leishmaniasis vaccine, developed intentionally to induce Leishmania-specific CD8+ T cells. METHODS: We conducted a first-in-human dose escalation Phase I trial in 20 healthy volunteers to assess the safety, tolerability and immunogenicity of a prime-only adenoviral vaccine for human VL and PKDL. ChAd63-KH is a replication defective simian adenovirus expressing a novel synthetic gene (KH) encoding two Leishmania proteins KMP-11 and HASPB. Uniquely, the latter was engineered to reflect repeat domain polymorphisms and arrangements identified from clinical isolates. We monitored innate immune responses by whole blood RNA-Seq and antigen specific CD8+ T cell responses by IFNγ ELISPOT and intracellular flow cytometry. FINDINGS: ChAd63-KH was safe at intramuscular doses of 1x1010 and 7.5x1010 vp. Whole blood transcriptomic profiling indicated that ChAd63-KH induced innate immune responses characterized by an interferon signature and the presence of activated dendritic cells. Broad and quantitatively robust CD8+ T cell responses were induced by vaccination in 100% (20/20) of vaccinated subjects. CONCLUSION: The results of this study support the further development of ChAd63-KH as a novel third generation vaccine for VL and PKDL. TRIAL REGISTRATION: This clinical trial (LEISH1) was registered at EudraCT (2012-005596-14) and ISRCTN (07766359).


Asunto(s)
Vacunas contra la Leishmaniasis/inmunología , Vacunas contra la Leishmaniasis/aislamiento & purificación , Leishmaniasis Cutánea/prevención & control , Leishmaniasis Cutánea/terapia , Leishmaniasis Visceral/prevención & control , Leishmaniasis Visceral/terapia , Adenovirus de los Simios/genética , Adolescente , Adulto , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Portadores de Fármacos , Ensayo de Immunospot Ligado a Enzimas , Femenino , Citometría de Flujo , Voluntarios Sanos , Humanos , Inyecciones Intramusculares , Interferón gamma/metabolismo , Leishmania/genética , Leishmania/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/efectos adversos , Masculino , Persona de Mediana Edad , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/aislamiento & purificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA