Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 104574, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870682

RESUMEN

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Asunto(s)
Caveolina 1 , Caveolinas , Enfermedad , Humanos , Caveolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Subunidades de Proteína/metabolismo , Enfermedad/genética
2.
Elife ; 92020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33164744

RESUMEN

Insulin secretion from ß-cells is reduced at the onset of type-1 and during type-2 diabetes. Although inflammation and metabolic dysfunction of ß-cells elicit secretory defects associated with type-1 or type-2 diabetes, accompanying changes to insulin granules have not been established. To address this, we performed detailed functional analyses of insulin granules purified from cells subjected to model treatments that mimic type-1 and type-2 diabetic conditions and discovered striking shifts in calcium affinities and fusion characteristics. We show that this behavior is correlated with two subpopulations of insulin granules whose relative abundance is differentially shifted depending on diabetic model condition. The two types of granules have different release characteristics, distinct lipid and protein compositions, and package different secretory contents alongside insulin. This complexity of ß-cell secretory physiology establishes a direct link between granule subpopulation and type of diabetes and leads to a revised model of secretory changes in the diabetogenic process.


Diabetes is a disease that occurs when sugar levels in the blood can no longer be controlled by a hormone called insulin. People with type 1 diabetes lose the ability to produce insulin after their immune system attacks the ß-cells in their pancreas that make this hormone. People with type 2 diabetes develop the disease when ß-cells become exhausted from increased insulin demand and stop producing insulin. ß-cells store insulin in small compartments called granules. When blood sugar levels rise, these granules fuse with the cell membrane allowing ß-cells to release large quantities of insulin at once. This fusion is disrupted early in type 1 diabetes, but later in type 2: the underlying causes of these disruptions are unclear. In the laboratory, signals that trigger inflammation and molecules called fatty acids can mimic type 1 or type 2 diabetes respectively when applied to insulin-producing cells. Kreutzberger, Kiessling et al. wanted to know whether pro-inflammatory molecules and fatty acids affect insulin granules differently at the molecular level. To do this, insulin-producing cells were grown in the lab and treated with either fatty acids or pro-inflammatory molecules. The insulin granules of these cells were then isolated. Next, the composition of the granules and how they fused to lab-made membranes that mimic the cell membrane was examined. The experiments revealed that healthy ß-cells have two types of granules, each with a different version of a protein called synaptotagmin. Cells treated with molecules mimicking type 1 diabetes lost granules with synaptotagmin-7, while granules with synaptotagmin-9 were lost in cells treated with fatty acids to imitate type 2 diabetes. Each type of granule responded differently to calcium levels in the cell and secreted different molecules, indicating that each elicits a different diabetic response in the body. These findings suggest that understanding how insulin granules are formed and regulated may help find treatments for type 1 and 2 diabetes, possibly leading to therapies that reverse the loss of different types of granules. Additionally, the molecules of these granules may also be used as markers to determine the stage of diabetes. More broadly, these results show how understanding how molecule release changes with disease in different cell types may help diagnose or stage a disease.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Colesterol/metabolismo , Citocinas/farmacología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Exocitosis/efectos de los fármacos , Humanos , Insulina/genética , Células Secretoras de Insulina/efectos de los fármacos , Células PC12 , Palmitatos/farmacología , Ratas , Proteínas SNARE/metabolismo , Vías Secretoras , Esfingomielinas/metabolismo , Sinaptotagminas/metabolismo
3.
Nat Commun ; 10(1): 428, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683896

RESUMEN

The intracellular ciliogenesis pathway requires membrane trafficking, fusion, and reorganization. Here, we demonstrate in human cells and zebrafish that the F-BAR domain containing proteins PACSIN1 and -2 play an essential role in ciliogenesis, similar to their binding partner and membrane reorganizer EHD1. In mature cilia, PACSINs and EHDs are dynamically localized to the ciliary pocket membrane (CPM) and transported away from this structure on membrane tubules along with proteins that exit the cilium. PACSINs function early in ciliogenesis at the ciliary vesicle (CV) stage to promote mother centriole to basal body transition. Remarkably, we show that PACSIN1 and EHD1 assemble membrane t7ubules from the developing intracellular cilium that attach to the plasma membrane, creating an extracellular membrane channel (EMC) to the outside of the cell. Together, our work uncovers a function for F-BAR proteins and membrane tubulation in ciliogenesis and explains how the intracellular cilium emerges from the cell.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Cuerpos Basales/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cuerpos Basales/ultraestructura , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/ultraestructura , Embrión no Mamífero , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Humanos , Fusión de Membrana , Ratones , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra
4.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692181

RESUMEN

Helicobacter pylori VacA is a secreted pore-forming toxin that induces cell vacuolation in vitro and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NH4Cl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NH4Cl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NH4Cl, indicating that NH4Cl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NH4Cl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during H. pylori infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/citología , Mucosa Gástrica/citología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Autofagia/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Línea Celular , Supervivencia Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/microbiología , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Concentración de Iones de Hidrógeno , Muramidasa/química , Muramidasa/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteolisis
5.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531133

RESUMEN

Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Microdominios de Membrana/metabolismo , Neoplasias Gástricas/patología , Vacuolas/metabolismo , Interacciones Huésped-Patógeno
6.
Dev Cell ; 44(5): 566-581.e8, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29533772

RESUMEN

Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting ß-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased ß-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote ß-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Clatrina/metabolismo , Drosophila melanogaster/metabolismo , Endocitosis/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Humanos , Lactante , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Vía de Señalización Wnt
7.
Traffic ; 17(12): 1297-1312, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27717241

RESUMEN

Congenital generalized lipodystrophy (CGL) and pulmonary arterial hypertension (PAH) have recently been associated with mutations in the caveolin-1 ( CAV1 ) gene, which encodes the primary structural protein of caveolae. However, little is currently known about how these CAV1 mutations impact caveolae formation or contribute to the development of disease. Here, we identify a heterozygous F160X CAV1 mutation predicted to generate a C-terminally truncated mutant protein in a patient with both PAH and CGL using whole exome sequencing, and characterize the properties of CAV1 , caveolae-associated proteins and caveolae in skin fibroblasts isolated from the patient. We show that morphologically defined caveolae are present in patient fibroblasts and that they function in mechanoprotection. However, they exhibited several notable defects, including enhanced accessibility of the C-terminus of wild-type CAV1 in caveolae, reduced colocalization of cavin-1 with CAV1 and decreased stability of both 8S and 70S oligomeric CAV1 complexes that are necessary for caveolae formation. These results were verified independently in reconstituted CAV1 -/- mouse embryonic fibroblasts. These findings identify defects in caveolae that may serve as contributing factors to the development of PAH and CGL and broaden our knowledge of CAV1 mutations associated with human disease.


Asunto(s)
Caveolina 1/genética , Hipertensión Pulmonar/genética , Lipodistrofia Generalizada Congénita/genética , Mutación , Caveolas/metabolismo , Preescolar , Ecocardiografía , Femenino , Fibroblastos/metabolismo , Humanos , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/diagnóstico , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/diagnóstico , Microscopía Fluorescente
8.
Front Cell Dev Biol ; 4: 68, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27446919

RESUMEN

In addition to containing highly dynamic nanoscale domains, the plasma membranes of many cell types are decorated with caveolae, flask-shaped domains enriched in the structural protein caveolin-1 (Cav1). The importance of caveolae in numerous cellular functions and processes has become well-recognized, and recent years have seen dramatic advances in our understanding of how caveolae assemble and the mechanisms control the turnover of Cav1. At the same time, work from our lab and others have revealed that commonly utilized strategies such as overexpression and tagging of Cav1 have unexpectedly complex consequences on the trafficking and fate of Cav1. Here, we discuss the implications of these findings for current models of caveolae biogenesis and Cav1 turnover. In addition, we discuss how disease-associated mutants of Cav1 impact caveolae assembly and outline open questions in this still-emerging area.

9.
Traffic ; 16(4): 417-38, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25639341

RESUMEN

Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1.


Asunto(s)
Caveolina 1/metabolismo , Animales , Células COS , Caveolina 2/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Chlorocebus aethiops , Endocitosis/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas Luminiscentes/metabolismo , Mecanotransducción Celular/fisiología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína Fluorescente Roja
10.
Traffic ; 16(6): 572-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690058

RESUMEN

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Microtúbulos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Clatrina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Unión Proteica , Receptores de Transferrina/metabolismo
11.
Traffic ; 14(6): 663-77, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23469926

RESUMEN

Mutations and alterations in caveolin-1 expression levels have been linked to a number of human diseases. How misregulation of caveolin-1 contributes to disease is not fully understood, but has been proposed to involve the intracellular accumulation of mutant forms of the protein. To better understand the molecular basis for trafficking defects that trap caveolin-1 intracellularly, we compared the properties of a GFP-tagged version of caveolin-1 P132L, a mutant form of caveolin-1 previously linked to breast cancer, with wild-type caveolin-1. Unexpectedly, wild-type caveolin-1-GFP also accumulated intracellularly, leading us to examine the mechanisms underlying the abnormal localization of the wild type and mutant protein in more detail. We show that both the nature of the tag and cellular context impact the subcellular distribution of caveolin-1, demonstrate that even the wild-type form of caveolin-1 can function as a dominant negative under some conditions, and identify specific conformation changes associated with incorrectly targeted forms of the protein. In addition, we find intracellular caveolin-1 is phosphorylated on Tyr14, but phosphorylation is not required for mistrafficking of the protein. These findings identify novel properties of mistargeted forms of caveolin-1 and raise the possibility that common trafficking defects underlie diseases associated with overexpression and mutations in caveolin-1.


Asunto(s)
Caveolina 1/metabolismo , Mutación Missense , Fenotipo , Animales , Neoplasias de la Mama/genética , Células COS , Caveolina 1/química , Caveolina 1/genética , Chlorocebus aethiops , Femenino , Células HeLa , Humanos , Fosforilación , Conformación Proteica , Transporte de Proteínas
12.
J Biomed Opt ; 17(1): 011008, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22352642

RESUMEN

The protein microtubule-associated protein 1, light chain 3 (LC3) functions in autophagosome formation and plays a central role in the autophagy pathway. Previously, we found LC3 diffuses more slowly in cells than is expected for a freely diffusing monomer, suggesting it may constitutively associate with a macromolecular complex containing other protein components of the pathway. In the current study, we used Förster resonance energy transfer (FRET) microscopy and fluorescence recovery after photobleaching (FRAP) to investigate the interactions of LC3 with Atg4B(C74A), a catalytically inactive mutant of the cysteine protease involved in lipidation and de-lipidation of LC3, as a model system to probe protein complex formation in the autophagy pathway. We show Atg4B(C74A) is in FRET proximity with LC3 in both the cytoplasm and nucleus of living cells, consistent with previous biochemical evidence that suggests these proteins directly interact. In addition, overexpressed Atg4B(C74A) diffuses significantly more slowly than predicted based on its molecular weight, and its translational diffusion coefficient is significantly slowed upon coexpression with LC3 to match that of LC3 itself. Taken together, these results suggest Atg4B(C74A) and LC3 are contained within the same multiprotein complex and that this complex exists in both the cytoplasm and nucleoplasm of living cells.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Cisteína Endopeptidasas/química , Citoplasma/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Modelos Biológicos , Complejos Multiproteicos/química , Análisis de la Célula Individual
13.
Exp Cell Res ; 318(2): 103-13, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22036648

RESUMEN

Recent studies have identified caveolin-1, a protein best known for its functions in caveolae, in apical endocytic recycling compartments in polarized epithelial cells. However, very little is known about the regulation of caveolin-1 in the endocytic recycling pathway. To address this question, in the current study we compared the relationship between compartments enriched in sub-apical caveolin-1 and Rab11a, a well-defined marker of apical recycling endosomes, using polarized MDCK cells as a model. We show that caveolin-1-containing vesicles define a compartment that partially overlaps with Rab11a, and that the distribution of subapical caveolin-1 and Rab11a shows a similar dependence on microtubule disruption. Mutants of the Rab11a effector, Rab11-FIP2 also altered the localization of caveolin-1. These findings indicate that caveolin-1 is coordinately regulated with Rab11a within the apical recycling system of polarized epithelial cells, suggesting that the two proteins are components of the same pathway.


Asunto(s)
Caveolina 1/metabolismo , Polaridad Celular , Proteínas de Unión al GTP rab/metabolismo , Animales , Línea Celular , Perros , Endocitosis , Endosomas , Células Epiteliales/metabolismo , Microtúbulos/metabolismo
14.
Biophys J ; 99(9): 2737-47, 2010 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-21044570

RESUMEN

Most of the important types of interactions that occur in cells can be characterized as binding-diffusion type processes, and can be quantified by kinetic rate constants such as diffusion coefficients (D) and binding rate constants (k(on) and k(off)). Confocal FRAP is a potentially important tool for the quantitative analysis of intracellular binding-diffusion kinetics, but how to dependably extract accurate kinetic constants from such analyses is still an open question. To this end, in this study, we developed what we believe is a new analytical model for confocal FRAP-based measurements of intracellular binding-diffusion processes, based on a closed-form equation of the FRAP formula for a spot photobleach geometry. This approach incorporates a binding diffusion model that allows for diffusion of both the unbound and bound species, and also compensates for binding diffusion that occurs during photobleaching, a critical consideration in confocal FRAP analysis. In addition, to address the problem of parametric multiplicity, we propose a scheme to reduce the number of fitting parameters in the effective diffusion subregime when D's for the bound and unbound species are known. We validate this method by measuring kinetic rate constants for the CAAX-mediated binding of Ras to membranes of the endoplasmic reticulum, obtaining binding constants of k(on) ∼ 255/s and k(off) ∼ 31/s.


Asunto(s)
Recuperación de Fluorescencia tras Fotoblanqueo/métodos , Animales , Fenómenos Biofísicos , Células COS , Chlorocebus aethiops , Difusión , Retículo Endoplásmico/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo/estadística & datos numéricos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Microscopía Confocal/métodos , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fotoblanqueo , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
J Cell Sci ; 123(Pt 14): 2434-43, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20571054

RESUMEN

The epithelial brush border (BB) Na(+)/H(+) exchanger NHE3 is associated with the actin cytoskeleton by binding both directly and indirectly to ezrin; indirect binding is via attachment to NHERF family proteins. NHE3 mobility in polarized epithelial cell BBs is restricted by the actin cytoskeleton and NHERF binding such that only approximately 30% of NHE3 in the apical domain of an OK cell line stably expressing NHERF2 is mobile, as judged by FRAP analysis. Given that levels of NHE3 are partially regulated by changes in trafficking, we investigated whether the cytoskeleton association of NHE3 was dynamic and changed as part of acute regulation to allow NHE3 trafficking. The agonist studied was lysophosphatidic acid (LPA), an inflammatory mediator, which acutely stimulates NHE3 activity by increasing the amount of NHE3 on the BBs by stimulated exocytosis. LPA acutely stimulated NHE3 activity in OK cells stably expressing NHERF2. Two conditions that totally prevented LPA stimulation of NHE3 activity only partially prevented stimulation of NHE3 mobility: the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, and the NHE3F1 double mutant which has minimal direct binding of NHE3 to ezrin. These results show that LPA stimulation of NHE3 mobility occurs in two parts: (1) PI3K-dependent exocytic trafficking to the BB and (2) an increase in surface mobility of NHE3 in BBs under basal conditions. Moreover, the LPA stimulatory effect on NHE3 mobility required NHERF2. Although NHE3 and NHERF2 co-precipitated under basal conditions, they failed to co-precipitate 30 minutes after addition of LPA, whereas the physical association was re-established by 50-60 minutes. This dynamic interaction between NHERF2 and NHE3 was confirmed by acceptor photobleaching Förster Resonance energy Transfer (FRET). The restricted mobility of NHE3 in BBs under basal conditions as a result of cytoskeleton association is therefore dynamic and is reversed as part of acute LPA stimulation of NHE3. We suggest that this acute but transient increase in NHE3 mobility induced by LPA occurs via two processes: addition of NHE3 to the BB by exocytosis, a process which precedes binding of NHE3 to the actin cytoskeleton via NHERF2-ezrin, and by release of NHERF2 from the NHE3 already localized in the apical membrane, enabling NHE3 to distribute throughout the microvilli. These fractions of NHE3 make up a newly identified pool of NHE3 called the 'transit pool'. Moreover, our results show that there are two aspects of LPA signaling involved in stimulation of NHE3 activity: PI3K-dependent stimulated NHE3 exocytosis and the newly described, PI3K-independent dissociation of microvillar NHE3 from NHERF2.


Asunto(s)
Microvellosidades/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Línea Celular , Polaridad Celular , Clonación Molecular , Células Epiteliales/ultraestructura , Exocitosis , Transferencia Resonante de Energía de Fluorescencia , Humanos , Mediadores de Inflamación/farmacología , Lisofosfolípidos/farmacología , Microvellosidades/efectos de los fármacos , Microvellosidades/ultraestructura , Mutación/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/genética , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/genética , Transgenes/genética
17.
Biophys J ; 91(1): 330-42, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16603489

RESUMEN

The tumor suppressor protein p53 plays a key role in maintaining the genomic stability of mammalian cells and preventing malignant transformation. In this study, we investigated the intracellular diffusion of a p53-GFP fusion protein using confocal fluorescence recovery after photobleaching. We show that the diffusion of p53-GFP within the nucleus is well described by a mathematical model for diffusion of particles that bind temporarily to a spatially homogeneous immobile structure with binding and release rates k1 and k2, respectively. The diffusion constant of p53-GFP was estimated to be Dp53-GFP=15.4 microm2 s-1, significantly slower than that of GFP alone, DGFP=41.6 microm2 s-1. The reaction rates of the binding and unbinding of p53-GFP were estimated as k1=0.3 s-1 and k2=0.4 s-1, respectively, values suggestive of nonspecific binding. Consistent with this finding, the diffusional mobilities of tumor-derived sequence-specific DNA binding mutants of p53 were indistinguishable from that of the wild-type protein. These data are consistent with a model in which, under steady-state conditions, p53 is latent and continuously scans DNA, requiring activation for sequence-specific DNA binding.


Asunto(s)
Núcleo Celular/química , Núcleo Celular/metabolismo , ADN/química , ADN/metabolismo , Modelos Biológicos , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Sitios de Unión , Simulación por Computador , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Difusión , Cinética , Modelos Químicos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA