Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cancers (Basel) ; 15(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37444459

RESUMEN

Three-dimensional (3D) cancer models are revolutionising research, allowing for the recapitulation of an in vivo-like response through the use of an in vitro system, which is more complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian (OvCa) are prone to developing resistance, are often lethal, and stand to benefit greatly from the enhanced modelling emulated by 3D cultures. However, the current models often fall short of the predicted response, where reproducibility is limited owing to the lack of standardised methodology and established protocols. This meta-analysis aims to assess the current scope of 3D OvCa models and the differences in the genetic profiles presented by a vast array of 3D cultures. An analysis of the literature (Pubmed.gov) spanning 2012-2022 was used to identify studies with paired data of 3D and 2D monolayer counterparts in addition to RNA sequencing and microarray data. From the data, 19 cell lines were found to show differential regulation in their gene expression profiles depending on the bio-scaffold (i.e., agarose, collagen, or Matrigel) compared to 2D cell cultures. The top genes differentially expressed in 2D vs. 3D included C3, CXCL1, 2, and 8, IL1B, SLP1, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and ANGPTL4. The top enriched gene sets for 2D vs. 3D included IFN-α and IFN-γ response, TNF-α signalling, IL-6-JAK-STAT3 signalling, angiogenesis, hedgehog signalling, apoptosis, epithelial-mesenchymal transition, hypoxia, and inflammatory response. Our transversal comparison of numerous scaffolds allowed us to highlight the variability that can be induced by these scaffolds in the transcriptional landscape and identify key genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies are needed to identify which is the most appropriate in vitro/preclinical model to study tumour microenvironments.

2.
J Clin Med ; 11(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233808

RESUMEN

Background: Ovarian cancer (OvCa) is one of the most lethal forms of gynaecological malignancy. Altered energy metabolism and increased aerobic glycolysis in OvCa are hallmarks that demand attention. The glucogenic hormone asprosin is often dysregulated in metabolic disorders such as insulin resistance, diabetes (type 2 and gestational), and preeclampsia. Despite association with metabolic disorders, its role in energy metabolism within the tumour microenvironment is yet to be explored. Here, we study the role of asprosin in OvCa using transcriptomics and expand on functional studies with clinical samples. Methods: RNA sequencing, functional gene enrichment analysis, Western blotting and ImageStream. Results: Following treatment with 100 nM of asprosin, the serous OvCa cell line, SKOV-3, displayed 160 and 173 gene regulatory changes, at 4 and 12 h respectively, when compared with control samples (p < 0.05 and Log2FC > 1). In addition to energy metabolism and glucose-related pathways, asprosin was shown to alter pathways associated with cell communication, TGF-ß signalling, and cell proliferation. Moreover, asprosin was shown to induce phosphorylation of ERK1/2 in the same in vitro model. Using liquid biopsies, we also report for novel expression of asprosin's predicted receptors OR4M1 and TLR4 in cancer-associated circulating cells; with significant reduction seen between pre-chemotherapy and end of first line chemotherapy, in addition to patients under maintenance with bevacizumab +/− olaparib for OR4M1. Conclusions: In relation to OvCa, asprosin appears to regulate numerous signalling pathways in-vitro. The prognostic potential of OR4M1 in liquid biopsies should also be explored further.

3.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36012147

RESUMEN

ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3's role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.


Asunto(s)
Neoplasias de la Mama , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Biología Computacional , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Recurrencia Local de Neoplasia
4.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628146

RESUMEN

Endocrine-disrupting chemicals (EDCs), including the xenoestrogen Bisphenol A (BPA), can interfere with hormonal signalling. Despite increasing reports of adverse health effects associated with exposure to EDCs, there are limited data on the effect of BPA in normal human ovaries. In this paper, we present a detailed analysis of the transcriptomic landscape in normal Human Epithelial Ovarian Cells (HOSEpiC) treated with BPA (10 and 100 nM). Gene expression profiles were determined using high-throughput RNA sequencing, followed by functional analyses using bioinformatics tools. In total, 272 and 454 differentially expressed genes (DEGs) were identified in 10 and 100 nM BPA-treated HOSEpiCs, respectively, compared to untreated controls. Biological pathways included mRNA surveillance pathways, oocyte meiosis, cellular senescence, and transcriptional misregulation in cancer. BPA exposure has a considerable impact on 10 genes: ANAPC2, AURKA, CDK1, CCNA2, CCNB1, PLK1, BUB1, KIF22, PDE3B, and CCNB3, which are also associated with progesterone-mediated oocyte maturation pathways. Future studies should further explore the effects of BPA and its metabolites in the ovaries in health and disease, making use of validated in vitro and in vivo models to generate data that will address existing knowledge gaps in basic biology, hazard characterisation, and risk assessment associated with the use of xenoestrogens such as BPA.


Asunto(s)
Disruptores Endocrinos , Transcriptoma , Compuestos de Bencidrilo/farmacología , Proteínas de Unión al ADN/farmacología , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Cinesinas , Ovario , Fenoles/farmacología
5.
J Pers Med ; 12(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35207688

RESUMEN

BACKGROUND: DNA double strand breaks can affect genome integrity potentially leading to cancer. RAD51-associated protein 1 (RAD51AP1), an accessory protein to RAD51, is critical for homologous recombination, a key DNA damage response pathway. Emerging studies indicate a novel role for RAD51AP1 in carcinogenesis. Here we provide additional insight into the role of RAD51AP1 in ovarian cancer (OvCa). METHODS: Gene expression and patient phenotype data were obtained from TCGA and GTEX project consortia for bioinformatics analysis. Immunohistochemistry of OvCa tissue microarray was undertaken. Functional analyses were performed in a SKOV3 OvCa cell line with down-regulation of RAD51AP1 using siRNA. RESULTS: RAD51AP1 is overexpressed at gene level in primary and recurrent OvCa compared to controls. At protein level, RAD51AP1 was up-regulated in low grade serous tumors compared to high grade OvCa. There was higher expression of RAD51AP1 in OvCa metastatic to lymph nodes compared to primary cancer samples. Gene enrichment analyses identified 12 differentially expressed genes (DEGs) related to OvCa, eight of which are also common in tissue from patients with type 2 diabetes mellitus (T2DM). CONCLUSIONS: RAD51AP1 is overexpressed in OvCa, Given the link between OvCa and T2DM, the eight-gene signature shows potential for predictive value.

6.
Mol Med Rep ; 25(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35211765

RESUMEN

In addition to the angiotensin­converting enzyme 2 (ACE2), a number of host cell entry mediators have been identified for severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), including transmembrane protease serine 4 (TMPRSS4). The authors have recently demonstrated the upregulation of TMPRSS4 in 11 different cancers, as well as its specific expression within the central nervous system using in silico tools. The present study aimed to expand the initial observations and, using immunohistochemistry, TMPRSS4 protein expression in the gastrointestinal (GI) tract and lungs was further mapped. Immunohistochemistry was performed on tissue arrays and lung tissues of patients with non­small cell lung cancer with concurrent coronavirus disease 2019 (COVID­19) infection using TMPRSS4 antibody. The results revealed that TMPRSS4 was abundantly expressed in the oesophagus, stomach, small intestine, jejunum, ileum, colon, liver and pancreas. Moreover, the extensive TMPRSS4 protein expression in the lungs of a deceased patient with COVID­19 with chronic obstructive pulmonary disease and bronchial carcinoma, as well in the adjacent normal tissue, was demonstrated for the first time, at least to the best of our knowledge. On the whole, the immunohistochemistry data of the present study suggest that TMPRSS4 may be implicated in the broader (pulmonary and extra­pulmonary) COVID­19 symptomatology; thus, it may be responsible for the tropism of this coronavirus both in the GI tract and lungs.


Asunto(s)
COVID-19/patología , Tracto Gastrointestinal/patología , Neoplasias Pulmonares/patología , Pulmón/patología , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/virología , Tracto Gastrointestinal/virología , Humanos , Inmunohistoquímica , Pulmón/virología , Neoplasias Pulmonares/complicaciones , Masculino , Proteínas de la Membrana/análisis , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/análisis , Internalización del Virus
7.
J Clin Med ; 12(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36615018

RESUMEN

Background: Augmented glycolysis in cancer cells is a process required for growth and development. The Warburg effect provides evidence of increased glycolysis and lactic acid fermentation in cancer cells. The lactate end-product of glycolysis is receiving growing traction for its role as a cell signalling molecule. Ovarian cancer (OvCa) is also characterised by altered glucose metabolism. We aim to explore circulating lactate levels in patients with high-grade serous OvCa (HGSOC) and to elucidate the expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) in OvCa. Methods: HCAR1 expression was detected in patient biopsy cores using immunohistochemistry, while lactate was measured from whole blood with a Biosen-C line clinic measuring system. Results: We noted significantly elevated lactate levels in OvCa patients (4.3 ± 1.9 mmol/L) compared with healthy controls (1.4 ± 0.6 mmol/L; p < 0.0001), with an AUC of 0.96. The HCAR1 gene is overexpressed in OvCa compared to healthy controls (p < 0.001). Using an OvCa tissue microarray (>75% expression in 100 patients), high protein expression was also recorded across all epithelial OvCa subtypes and ovarian normal adjacent tissue (NAT). Conclusions: Lactate monitoring is a simple, cost-efficient test that can offer point-of-care results. Our data suggest that the potential of circulating lactate as a screening biomarker in OvCa merits further research attention.

8.
Oncol Lett ; 22(3): 650, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34386072

RESUMEN

Ovarian cancer affects >295,000 women worldwide and is the most lethal of gynaecological malignancies. Often diagnosed at a late stage, current research efforts seek to further the molecular understanding of its aetiopathogenesis and the development of novel biomarkers. The present study investigated the expression levels of the glucogenic hormone asprosin [encoded by fibrillin-1 (FBN1)], and its cognate receptor, olfactory receptor 4M1 (OR4M1), in ovarian cancer. A blend of in silico open access The Cancer Genome Atlas data, as well as in vitro reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry and immunofluorescence data were used. RT-qPCR revealed expression levels of OR4M1 and FBN1 in clinical samples and in ovarian cancer cell lines (SKOV-3, PEO1, PEO4 and MDAH-2774), as well as the normal human ovarian surface epithelial cell line (HOSEpiC). Immunohistochemical staining of a tissue microarray was used to identify the expression levels of OR4M1 and asprosin in ovarian cancer samples of varying histological subtype and grade, including clear cell carcinoma, serous ovarian cancer and mucinous adenocarcinoma. Immunofluorescence analysis revealed asprosin expression in SKOV-3 and HOSEpiC cells. These results demonstrated the expression of both asprosin and OR4M1 in normal and malignant human ovarian tissues. This research invokes further investigation to advance the understanding of the role of asprosin and OR4M1 within the ovarian tumour microenvironment.

9.
J Ovarian Res ; 14(1): 84, 2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34174910

RESUMEN

BACKGROUND: The p38MAPK family of Mitogen Activated Protein Kinases are a group of signalling molecules involved in cell growth, survival, proliferation and differentiation. The widely studied p38α isoform is ubiquitously expressed and is implicated in a number of cancer pathologies, as are p38γ and p38δ. However, the mechanistic role of the isoform, p38ß, remains fairly elusive. Recent studies suggest a possible role of p38ß in both breast and endometrial cancer with research suggesting involvement in bone metastasis and cancer cell survival. Female tissue specific cancers such as breast, endometrial, uterine and ovary account for over 3,000,000 cancer related incidents annually; advancements in therapeutics and treatment however require a deeper understanding of the molecular aetiology associated with these diseases. This study provides an overview of the MAPK signalling molecule p38ß (MAPK11) in female cancers using an in-silico approach. METHODS: A detailed gene expression and methylation analysis was performed using datasets from cBioportal, CanSar and MEXPRESS. Breast, Uterine Endometrial, Cervical, Ovarian and Uterine Carcinosarcoma TCGA cancer datasets were used and analysed. RESULTS: Data using cBioportal and CanSAR suggest that expression of p38ß is lower in cancers: BRCA, UCEC, UCS, CESC and OV compared to normal tissue. Methylation data from SMART and MEXPRESS indicate significant probe level variation of CpG island methylation status of the gene MAPK11. Analysis of the genes' two CpG islands shows that the gene was hypermethylated in the CpG1 with increased methylation seen in BRCA, CESC and UCEC cancer data sets with a slight increase of expression recorded in cancer samples. CpG2 exhibited hypomethylation with no significant difference between samples and high levels of expression. Further analysis from MEXPRESS revealed no significance between probe methylation and altered levels of expression. In addition, no difference in the expression of BRCA oestrogen/progesterone/HER2 status was seen. CONCLUSION: This data provides an overview of the expression of p38ß in female tissue specific cancers, showing a decrease in expression of the gene in BRCA, UCEC, CESC, UCS and OV, increasing the understanding of p38ß MAPK expression and offering insight for future in-vitro investigation and therapeutic application.


Asunto(s)
Proteína Quinasa 11 Activada por Mitógenos/genética , Neoplasias/enzimología , Animales , Simulación por Computador , Metilación de ADN , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética
10.
Int J Mol Med ; 47(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33649798

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus­2 (SARS­CoV­2), the causative viral agent for the ongoing COVID­19 pandemic, enters its host cells primarily via the binding of the SARS­CoV­2 spike (S) proteins to the angiotensin­converting enzyme 2 (ACE2). A number of other cell entry mediators have also been identified, including neuropilin­1 (NRP1) and transmembrane protease serine 2 (TMPRSS2). More recently, it has been demonstrated that transmembrane protease serine 4 (TMPRSS4) along with TMPRSS2 activate the SARS­CoV­2 S proteins, and enhance the viral infection of human small intestinal enterocytes. To date, a systematic analysis of TMPRSS4 in health and disease is lacking. In the present study, using in silico tools, the gene expression and genetic alteration of TMPRSS4 were analysed across numerous tumours and compared to controls. The observations were also expanded to the level of the central nervous system (CNS). The findings revealed that TMPRSS4 was overexpressed in 11 types of cancer, including lung adenocarcinoma, lung squamous cell carcinoma, cervical squamous cell carcinoma, thyroid carcinoma, ovarian cancer, cancer of the rectum, pancreatic cancer, colon and stomach adenocarcinoma, uterine carcinosarcoma and uterine corpus endometrial carcinoma, whilst it was significantly downregulated in kidney carcinomas, acute myeloid leukaemia, skin cutaneous melanoma and testicular germ cell tumours. Finally, a high TMPRSS4 expression was documented in the olfactory tubercle, paraolfactory gyrus and frontal operculum, all brain regions which are associated with the sense of smell and taste. Collectively, these data suggest that TMPRSS4 may play a role in COVID­19 symptomatology as another SARS­CoV­2 host cell entry mediator responsible for the tropism of this coronavirus both in the periphery and the CNS.


Asunto(s)
COVID-19/enzimología , COVID-19/genética , Proteínas de la Membrana/genética , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/genética , Internalización del Virus , Encéfalo/enzimología , COVID-19/virología , Sistema Nervioso Central/enzimología , Simulación por Computador , Bases de Datos Genéticas , Femenino , Tracto Gastrointestinal/enzimología , Perfilación de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Masculino , Proteínas de la Membrana/fisiología , Neoplasias/enzimología , Neoplasias/genética , Pandemias , Serina Endopeptidasas/fisiología
11.
Int J Mol Med ; 46(3): 949-956, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32705281

RESUMEN

Severe acute respiratory syndrome (SARS) coronavirus­2 (SARS­CoV­2) enters into human host cells via mechanisms facilitated mostly by angiotensin­converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). New loss of smell (anosmia/hyposmia) is now recognized as a COVID­19 related symptom, which may be caused by SARS­CoV­2 infection and damage of the olfactory receptor (OR) cells in the nasal neuro­epithelium and/or central involvement of the olfactory bulb. ORs are also expressed peripherally (e.g., in tissues of the gastrointestinal and respiratory systems) and it is possible that their local functions could also be impaired by SARS­CoV­2 infection of these tissues. Using Gene Expression Profiling Interactive Analysis, The Cancer Genome Atlas, Genotype­Tissue Expression, cBioPortal and Shiny Methylation Analysis Resource Tool, we highlight the expression of peripheral ORs in both healthy and malignant tissues, and describe their co­expression with key mediators of SARS­CoV­2 infection, such as ACE2 and TMPRSS2, as well as cathepsin L (CTSL; another cellular protease mediating SARS­CoV­2 infection of host cells). A wide expression profile of peripheral ORs was noted, particularly in tissues such as the prostate, testis, thyroid, brain, liver, kidney and bladder, as well as tissues with known involvement in cardio­metabolic disease (e.g., the adipose tissue, pancreas and heart). Among these, OR51E2, in particular, was significantly upregulated in prostate adenocarcinoma (PRAD) and co­expressed primarily with TMPRSS2. Functional networks of this OR were further analysed using the GeneMANIA interactive tool, showing that OR51E2 interacts with a plethora of genes related to the prostate. Further in vitro and clinical studies are clearly required to elucidate the role of ORs, both at the olfactory level and the periphery, in the context of COVID­19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Anosmia/etiología , COVID-19/complicaciones , Proteínas de Neoplasias/genética , Receptores Odorantes/genética , Serina Endopeptidasas/genética , Anosmia/genética , COVID-19/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Humanos , Masculino , Neoplasias/genética , Neoplasias de la Próstata/genética , SARS-CoV-2/aislamiento & purificación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA