Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 12(7): e0179782, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683084

RESUMEN

Several regulators of programmed cell death (PCD) have been identified in plants which encode proteins with putative lipid-binding domains. Among them, VAD1 (Vascular Associated Death) contains a novel protein domain called VASt (VAD1 analog StAR-related lipid transfer) still uncharacterized. The Arabidopsis mutant vad1-1 has been shown to exhibit a lesion mimic phenotype with light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, associated with defense gene expression and increased resistance to Pseudomonas strains. To test the potential of ectopic expression of VAD1 to influence HR cell death and to elucidate the role of the VASt domain in this function, we performed a structure-function analysis of VAD1 by transient over-expression in Nicotiana benthamiana and by complementation of the mutant vad1-1. We found that (i) overexpression of VAD1 controls negatively the HR cell death and defense expression either transiently in Nicotiana benthamania or in Arabidopsis plants in response to avirulent strains of Pseudomonas syringae, (ii) VAD1 is expressed in multiple subcellular compartments, including the nucleus, and (iii) while the GRAM domain does not modify neither the subcellular localization of VAD1 nor its immunorepressor activity, the domain VASt plays an essential role in both processes. In conclusion, VAD1 acts as a negative regulator of cell death associated with the plant immune response and the VASt domain of this unknown protein plays an essential role in this function, opening the way for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/inmunología , Muerte Celular/inmunología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/inmunología , Muerte Celular/genética , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Núcleo Celular/microbiología , Citosol/inmunología , Citosol/metabolismo , Citosol/microbiología , Prueba de Complementación Genética , Mutación , Células Vegetales/inmunología , Células Vegetales/metabolismo , Células Vegetales/microbiología , Enfermedades de las Plantas/genética , Dominios Proteicos , Pseudomonas syringae/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/microbiología
2.
Nat Commun ; 4: 1476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403577

RESUMEN

One of the most efficient plant resistance reactions to pathogen attack is the hypersensitive response, a form of programmed cell death at infection sites. The Arabidopsis transcription factor MYB30 is a positive regulator of hypersensitive cell death responses. Here we show that MIEL1 (MYB30-Interacting E3 Ligase1), an Arabidopsis RING-type E3 ubiquitin ligase that interacts with and ubiquitinates MYB30, leads to MYB30 proteasomal degradation and downregulation of its transcriptional activity. In non-infected plants, MIEL1 attenuates cell death and defence through degradation of MYB30. Following bacterial inoculation, repression of MIEL1 expression removes this negative regulation allowing sufficient MYB30 accumulation in the inoculated zone to trigger the hypersensitive response and restrict pathogen growth. Our work underlines the important role played by ubiquitination to control the hypersensitive response and highlights the sophisticated fine-tuning of plant responses to pathogen attack. Overall, this work emphasizes the importance of protein modification by ubiquitination during the regulation of transcriptional responses to stress in eukaryotic cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/inmunología , Proteolisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Microscopía Confocal , Células Vegetales/metabolismo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Transporte de Proteínas , Pseudomonas syringae/fisiología , Nicotiana/genética , Factores de Transcripción/genética , Transcripción Genética , Ubiquitinación
3.
Plant Cell ; 19(6): 1851-65, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17586656

RESUMEN

NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Glutatión/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diploidia , Activación Enzimática , Fertilidad , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glutarredoxinas , Modelos Biológicos , Mutación/genética , Oxidación-Reducción , Estrés Oxidativo , Oxidorreductasas/metabolismo , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Polen/metabolismo , Plantones/metabolismo , Semillas/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética
4.
FEBS Lett ; 579(2): 337-42, 2005 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-15642341

RESUMEN

NADPH-dependent thioredoxin reductases (NTR) are homodimeric enzymes that reduce thioredoxins. Two genes encoding NADPH-dependent thioredoxin reductases (AtNTRA and AtNTRB) were found in the genome of Arabidopsis thaliana. These originated from a recent duplication event and the encoded proteins are highly homologous. Previously, AtNTRA was shown to encode a dual targeted cytosol and mitochondrial protein. Here, we show that the AtNTRB gene encodes two mRNAs, presumably by initiating transcription at two different sites. The longer mRNA encodes a precursor polypeptide that is actively imported into mitochondria by a cleavage-associated mechanism, while the shorter mRNA encodes a cytosolic isoform. Isolation of Arabidopsis mutants with knocked-out AtNTRA or AtNTRB genes allowed us to prove that both genes encode cytosolic and mitochondrial isoforms. Interestingly, AtNTRB appeared to express the major mitochondrial NTR, while AtNTRA expresses as the major cytosolic isoform, suggesting that these two recently duplicated genes are evolving towards a specific function.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Mitocondrias/enzimología , Reductasa de Tiorredoxina-Disulfuro/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Mapeo Cromosómico , Citosol/química , Citosol/enzimología , Duplicación de Gen , Mitocondrias/química , Mitocondrias/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Transporte de Proteínas , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Alineación de Secuencia , Reductasa de Tiorredoxina-Disulfuro/análisis , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA