Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Extracell Biol ; 3(8): e70000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185334

RESUMEN

Alarming sepsis-related mortality rates present significant challenges to healthcare services globally. Despite advances made in the field, there is still an urgent need to develop innovative approaches that could improve survival rates and reduce the overall cost of treatment for sepsis patients. Therefore, this study aimed to develop a novel multifunctional therapeutic agent for advanced control of bacterial sepsis. Extracellular vesicles (EVs) isolated from lipopolysaccharide (LPS) induced HepG2 (hepatocellular carcinoma cells) (iEV) displayed an average particle size of 171.63 ± 2.77 nm, a poly dispersion index (PDI) of 0.32 ± 0.0, and a zeta potential (ZP) of -11.87 ± 0.18 mV. Compared to HepG2 EV, LPS induction significantly increases the EV protein concentration, PDI and ZP, reduces the average size and promotes cell proliferation and cytoprotective effects of the isolated EVs (iEVs) against LPS-induced cytotoxicity. Coating of iEV with a cationic antimicrobial peptide (AMP) to form PC-iEV slightly changed their physical properties and shifted their surface charge toward neutral values. This modification improved the antibacterial activity (2-fold lower minimum bactericidal concentration [MBC] values) and biocompatibility of the conjugated peptide while maintaining iEV cytoprotective and anti-inflammatory activities. Our findings indicate the superior anti-inflammatory and antibacterial dual activity of PC-iEV against pathogens associated with sepsis.

2.
Int J Pharm ; 662: 124493, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39048042

RESUMEN

Sepsis is a life-threatening syndrome resulting from an imbalanced immune response to severe infections. Despite advances in nanomedicines, effective treatments for sepsis are still lacking. Herein, vancomycin free base (VCM)-loaded dual functionalized biomimetic liposomes based on a novel TLR4-targeting peptide (P3) and hyaluronic acid (HA) (HA-P3-Lipo) were developed to enhance sepsis therapy. The nanocarrier revealed appropriate physicochemical parameters, good stability, and biocompatibility. The release of VCM from HA-P3-Lipo was found to be sustained with 76 % VCM released in 48 h. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, HA-P3-Lipo revealed 2-fold enhanced antibacterial activity against S. aureus, sustained antibacterial activity against MRSA over 72 h and 5-fold better MRSA biofilm inhibition compared to bare VCM. Bacterial-killing kinetics and flow cytometry confirmed the superiority of HA-P3-Lipo in eliminating MRSA faster than VCM. The in vivo potential of the nanocarrier was elucidated in an MRSA-induced sepsis mice model, and the results confirmed the superiority of HA-P3-Lipo compared to free VCM in eliminating bacteria and down-regulating the proinflammatory markers. Therefore, HA-P3-Lipo exhibits potential as a promising novel multi-functional nanosystem against sepsis and could significantly contribute to the transformation of sepsis therapy.


Asunto(s)
Antibacterianos , Ácido Hialurónico , Liposomas , Staphylococcus aureus Resistente a Meticilina , Péptidos , Sepsis , Vancomicina , Ácido Hialurónico/química , Animales , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Vancomicina/administración & dosificación , Vancomicina/farmacología , Vancomicina/química , Péptidos/química , Péptidos/farmacología , Péptidos/administración & dosificación , Liberación de Fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Receptor Toll-Like 4/metabolismo , Biopelículas/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Masculino , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/administración & dosificación , Células RAW 264.7
3.
J Biomol Struct Dyn ; 41(9): 4093-4105, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477414

RESUMEN

Zearalenone is an estrogenic mycotoxin which is a common food contaminant and has been implicated in increasing the incidence of carcinogenesis and other reproductive health ailments through the estrogen receptor alpha (ERα) pathway. Competitive ERα blockers such as 4-Hydroxytamoxifen (OHT), are synthetic FDA approved drugs which, albeit being an effective anticancer agent, induces life altering side effects. For this reason, there is an increased interest in the use of naturally occurring medicinal plant products such as flavonoids. This study aimed to identity flavonoid ERα inhibitors and provide insights into the mechanism of inhibition using computational techniques. The Molecular Mechanics/Generalized Born Surface Area calculations revealed that quercetrin, hesperidin, epigallocatechin 3-gallate and kaempferol 7-O-glucoside out of 14 flavonoids had higher binding affinity for ERα than OHT. The structural analysis revealed that the binding of the compounds to the receptor lead to dynamic alterations, which induced conformational shift in the structure and orientation of the receptor resulting in stabilised, compact and low energy systems. The results of this study provide imperative information that supports the use of flavonoids in the inhibition of ERα to prevent or ameliorate the consequential adverse effects associated with zearalenone exposure.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Receptores de Estrógenos , Zearalenona , Receptores de Estrógenos/química , Receptor alfa de Estrógeno , Simulación de Dinámica Molecular , Flavonoides/farmacología , Flavonoides/uso terapéutico , Zearalenona/farmacología , Estrógenos
4.
Int J Biol Macromol ; 222(Pt A): 546-561, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36150574

RESUMEN

The incidence and of bacterial infections, and resulting mortality, among cancer patients is growing dramatically, worldwide. Several therapeutics have been reported to have dual anticancer and antibacterial activity. However, there is still an urgent need to develop new drug delivery strategies to improve their clinical efficacy. Therefore, this study aimed to develop a novel acid cleavable prodrug (HA-Cip) from ciprofloxacin and hyaluronic acid to simultaneously enhance the anticancer and antibacterial properties of Cip as a superior drug delivery system. HA-Cip was synthesised and characterised (FT-IR, HR-MS, and H1 NMR). HA-Cip generated stable micelles with an average particle size, poly dispersion index (PDI) and zeta potential (ZP) of 237.89 ± 25.74 nm, 0.265 ± 0.013, and -17.82 ± 1.53 mV, respectively. HA-Cip showed ≥80 % cell viability against human embryonic kidney 293 cells (non-cancerous cells), ˂0.3 % haemolysis; and a faster pH-responsive ciprofloxacin release at pH 6.0. HA-Cip showed a 5.4-fold improvement in ciprofloxacin in vitro anticancer activity against hepatocellular cancer (HepG2) cells; and enhanced in vitro antibacterial activity against Escherichia coli and Klebsiella pneumoniae at pH 6.0. Our findings show HA-Cip as a promising prodrug for targeted delivery of ciprofloxacin to efficiently treat bacterial infections associated, and/or co-existing, with cancer.


Asunto(s)
Infecciones Bacterianas , Neoplasias , Profármacos , Humanos , Ciprofloxacina/farmacología , Ciprofloxacina/química , Profármacos/farmacología , Profármacos/uso terapéutico , Ácido Hialurónico/química , Espectroscopía Infrarroja por Transformada de Fourier , Neoplasias/tratamiento farmacológico , Antibacterianos/química , Infecciones Bacterianas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
5.
Nutrients ; 14(16)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36014942

RESUMEN

Breast cancer (BC) is the most frequently diagnosed type of cancer as of 2020. Quercetin (Que) and Naringenin (Nar) are predominantly found in citrus fruits and vegetables and have shown promising antiproliferative effects in multiple studies. It is also known that the bioactive effects of these flavonoids are more pronounced in whole fruit than in isolation. This study investigates the potential synergistic effects of Que and Nar (CoQN) in MCF-7 BC cells. MCF-7 cells were treated with a range of concentrations of Que, Nar or CoQN to determine cell viability. The IC50 of CoQN was then used to investigate caspase 3/7 activity, Bcl-2 gene expression, lipid peroxidation and mitochondrial membrane potential to evaluate oxidative stress and apoptosis. CoQN treatment produced significant cytotoxicity, reduced Bcl-2 gene expression and increased caspase 3/7 activity compared to either Nar or Que. Furthermore, CoQN significantly increased lipid peroxidation and reduced mitochondrial membrane potential (MMP) compared to either Nar or Que. Therefore, CoQN treatment has potential pharmacological application in BC chemotherapy by inducing oxidative stress and apoptosis in MCF-7 BC cells. The results of this study support the increased consumption of whole fruits and vegetables to reduce cell proliferation in cancer.


Asunto(s)
Neoplasias de la Mama , Quercetina , Apoptosis , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Femenino , Flavanonas , Humanos , Células MCF-7 , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico
6.
Comput Math Methods Med ; 2022: 2147763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685897

RESUMEN

Cancer is a disease caused by the uncontrolled, abnormal growth of cells in different anatomic sites. In 2018, it was predicted that the worldwide cancer burden would rise to 18.1 million new cases and 9.6 million deaths. Anticancer compounds, often known as chemotherapeutic medicines, have gained much interest in recent cancer research. These medicines work through various biological processes in targeting cells at various stages of the cell's life cycle. One of the most significant roadblocks to developing anticancer drugs is that traditional chemotherapy affects normal cells and cancer cells, resulting in substantial side effects. Recently, advancements in new drug development methodologies and the prediction of the targeted interatomic and intermolecular ligand interaction sites have been beneficial. This has prompted further research into developing and discovering novel chemical species as preferred therapeutic compounds against specific cancer types. Identifying new drug molecules with high selectivity and specificity for cancer is a prerequisite in the treatment and management of the disease. The overexpression of HSP90 occurs in patients with cancer, and the HSP90 triggers unstable harmful kinase functions, which enhance carcinogenesis. Therefore, the development of potent HSP90 inhibitors with high selectivity and specificity becomes very imperative. The activities of HSP90 as chaperones and cochaperones are complex due to the conformational dynamism, and this could be one of the reasons why no HSP90 drugs have made it beyond the clinical trials. Nevertheless, HSP90 modulations appear to be preferred due to the competitive inhibition of the targeted N-terminal adenosine triphosphate pocket. This study, therefore, presents an overview of the various computational models implored in the development of HSP90 inhibitors as anticancer medicines. We hereby suggest an extensive investigation of advanced computational modelling of the three different domains of HSP90 for potent, effective inhibitor design with minimal off-target effects.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Computadores , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
7.
Bioorg Chem ; 107: 104573, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33387731

RESUMEN

The induction of cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (ABCB1) influence drug plasma, and eventually decreases the drugs' therapeutic effects. The effects of Plant-derived compounds (PCs) on drug-metabolising proteins are largely unknown. This study investigated the cytotoxicity, cell viability profiles and regulatory influences of four PCs (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) on the mRNA and protein expressions of CYP3A4 and ABCB1 in HepG2 and HEK293 cells. After treatment with the PCs (0-400 µM) for 24 h, 80% (IC20) and 50% (IC50) cell viability were determined. The PCs were not toxic to HepG2 (ATP levels increased at IC20, insignificant change in LDH (lactate dehydrogenase) with the exception of LUT, and ABCB1 protein expressions decreased. The PCs decreased CYP3A4 at IC20 (except LUT), EGCG and K7G at IC20 decreased mRNA expression. For HEK293 cells, no significant change in ATP, except for EGCG IC20 and K7G IC50 which decreased and increased, respectively. LDH decreased at IC20, but LUT IC50 significant increase LDH. ABCB1 protein expression increased at both IC20 and IC50, but LUT and EGA at IC50 decreased mRNA expression. The PCs at IC20, and IC50 of LUT, K7G and of EGCG may enhance drug bioavailability.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antivirales/química , Citocromo P-450 CYP3A/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Antivirales/metabolismo , Antivirales/farmacología , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP3A/genética , Ácido Elágico/química , Ácido Elágico/metabolismo , Ácido Elágico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Luteolina/química , Luteolina/metabolismo , Luteolina/farmacología , Plantas/química , Plantas/metabolismo , Unión Proteica , ARN Mensajero/metabolismo
8.
Biotechnol Appl Biochem ; 68(2): 257-266, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32250477

RESUMEN

Di-2-picolylamine (DPA) is an organic compound that has been shown to possess antioxidant properties when conjugated to form a metal complex. The basis of this study was to determine the effects of DPA on the proliferation and apoptosis of human hepatocellular carcinoma cells and elucidate the possible mechanisms. The methylthiazol tetrazolium assay served to measure cell viability and generated an IC50 of 1591 µM. Luminometry was used to investigate caspase activity and ATP concentration. It was observed that the decreased cell viability was associated with reduced ATP levels. Despite increased Bax and caspase 9 activity, cell death was caspase independent as indicated by the reduction in caspase 3/7 activity. This was associated with the downregulation poly(ADP-ribose) polymerase cleavage (Western blotting). However, the Hoescht assay depicted nuclear condensation and apoptotic body formation with elevated DPA levels suggesting DNA damage in HepG2 cells. DNA damage assessed by the comet assay confirmed an increased comet tail formation. The presence of oxidative stress was investigated by quantifying reactive species (malondialdehyde and nitrates concentration) and Western blotting to confirm the expression of antioxidant proteins. The DPA increased lipid peroxidation (RNS), a marker of oxidative stress, consequently causing cell death. The accompanying upregulation of stress-associated proteins superoxide dismutase (SOD2), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and Hsp70 verifies oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Caspasas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Carcinoma Hepatocelular/patología , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología
9.
J Biochem Mol Toxicol ; 34(12): e22607, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32869927

RESUMEN

Antibiotic resistance poses a great threat to human, animal and environmental health. ß-Lactam antibiotics have been successful in combating bacterial infections. However, the overuse, inappropriate prescribing, unavailability of new antibiotics and regulation barriers have exacerbated bacterial resistance to these antibiotics. 1,4,7-Triazacyclononane (TACN) is a cyclic organic tridentate inhibitor with strong metal-chelating abilities that has been shown to inhibit ß-lactamase enzymes and may represent an important breakthrough in the treatment of drug-resistant bacterial strains. However, its cytotoxicity in the liver is unknown. This study aimed to determine the effect of TACN on oxidative stress in HepG2 cells. The HepG2 cells were treated with 0 to 500 µM TACN for 24 hours to obtain an IC50 for use in subsequent assays. Free radicals were measured using the thiobarbituric acid reactive substance and nitric oxide synthase assays, respectively, while antioxidant levels were assessed using luminometry (glutathione [GSH] and adenosine triphosphate [ATP]) and Western blot analysis (SOD, catalase, GPx-1, HSP70 and Nrf2). Percentage survival fluctuated as TACN concentration increased with a calculated IC50 of 545 µM. A slight increase in HSP70 and Nrf2 expression indicated the presence of stress and a response against it, respectively. However, free radical production was not increased as indicated by decreased malondialdehyde levels and reactive nitrogen species. Glutathione levels increased slightly, while ATP levels were marginally altered. The results suggest that TACN does not induce oxidative stress in HepG2 cells and can be exploited as a potential inhibitor.


Asunto(s)
Compuestos Heterocíclicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Western Blotting , Supervivencia Celular/efectos de los fármacos , Glutatión/metabolismo , Células Hep G2 , Humanos , Especies de Nitrógeno Reactivo/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
10.
Int J Toxicol ; 39(4): 341-351, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32351145

RESUMEN

Di(2-picolyl) amine (DPA) is a pyridine derivative known to chelate metal ions and thus has potential anticancer properties; however, its effect on normal cells remains unchartered necessitating further research. This study, therefore, investigated the mechanistic effects of DPA-induced cytotoxicity and apoptosis in the HEK293 cell line. Methods required that an half the maximum inhibition concentration (IC50) was derived using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Analyses aimed to assess oxidative stress, membrane damage, and DNA fragmentation by means of biochemical assays were performed. Luminometry analysis was carried out to understand the mechanism of apoptosis induction by determining the levels of adenosine triphosphate (ATP) and the activities of caspase-8, -9, and -3/7. Western blotting was used to ascertain the expression of apoptotic and stress-related proteins. An IC50 of 1,079 µM DPA was obtained. Antioxidant effect correlated with a minimum increase in reactive oxygen species induced lipid peroxidation. The increase in initiator caspase-8 and -9 and executioner caspase-3/7 activities by DPA-induced apoptosis albeit prompting a decline in the levels of ATP. Furthermore, DPA brought about the following consequences on HEK293 cells: markedly elevated tail lengths of the comets, poly (ADP-ribose) polymerase 1 cleavage, and apoptotic body formation observed in the late stages. The cytotoxic effects of DPA in HEK293 cells may be mediated by induction of apoptosis via the caspase-dependent mechanism.


Asunto(s)
Aminas/toxicidad , Quelantes/toxicidad , Ácidos Picolínicos/toxicidad , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Ensayo Cometa , Daño del ADN , Células HEK293 , Humanos , Riñón/citología , Peroxidación de Lípido/efectos de los fármacos , Nitratos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
11.
Molecules ; 25(8)2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295059

RESUMEN

Heat shock protein 90 (Hsp90) is a crucial component in carcinogenesis and serves as a molecular chaperone that facilitates protein maturation whilst protecting cells against temperature-induced stress. The function of Hsp90 is highly dependent on adenosine triphosphate (ATP) binding to the N-terminal domain of the protein. Thus, inhibition through displacement of ATP by means of competitive binding with a suitable organic molecule is considered an attractive topic in cancer research. Radicicol (RD) and its derivative, resorcinylic isoxazole amine NVP-AUY922 (NVP), have shown promising pharmacodynamics against Hsp90 activity. To date, the underlying binding mechanism of RD and NVP has not yet been investigated. In this study, we provide a comprehensive understanding of the binding mechanism of RD and NVP, from an atomistic perspective. Density functional theory (DFT) calculations enabled the analyses of the compounds' electronic properties and results obtained proved to be significant in which NVP was predicted to be more favorable with solvation free energy value of -23.3 kcal/mol and highest stability energy of 75.5 kcal/mol for a major atomic delocalization. Molecular dynamic (MD) analysis revealed NVP bound to Hsp90 (NT-NVP) is more stable in comparison to RD (NT-RD). The Hsp90 protein exhibited a greater binding affinity for NT-NVP (-49.4 ± 3.9 kcal/mol) relative to NT-RD (-28.9 ± 4.5 kcal/mol). The key residues influential in this interaction are Gly 97, Asp 93 and Thr 184. These findings provide valuable insights into the Hsp90 dynamics and will serve as a guide for the design of potent novel inhibitors for cancer treatment.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Isoxazoles/química , Macrólidos/química , Resorcinoles/química , Adenosina Trifosfato/química , Unión Competitiva , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Enlace de Hidrógeno , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Dominios Proteicos , Electricidad Estática , Termodinámica
12.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817549

RESUMEN

The study investigated the cytotoxic effect of a natural polyphenolic compound Tannic acid (TA) on human liver hepatocellular carcinoma (HepG2) cells and elucidated the possible mechanisms that lead to apoptosis and oxidative stress HepG2 cell. The HepG2 cells were treated with TA for 24 h and various assays were conducted to determine whether TA could induce cell death and oxidative stress. The cell viability assay was used to determine the half maximal inhibitory concentration (IC50), caspase activity and cellular ATP were determined by luminometry. Microscopy was employed to determine deoxyribonucleic acid (DNA) integrity, while thiobarbituric acid (TBARS) and nitric oxide synthase (NOS) assays were used to elucidate cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS), respectively. Western blotting was used to confirm protein expression. The results revealed that tannic acid induced caspase activation and increased the presence of cellular ROS and RNS, while downregulating antioxidant expression. Tannic acid also showed increased cell death and increased DNA fragmentation. In conclusion, TA was able to induce apoptosis by DNA fragmentation via caspase-dependent and caspase-independent mechanism. It was also able to induce oxidative stress, consequently contributing to cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Taninos/farmacología , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/biosíntesis , Especies Reactivas de Oxígeno/metabolismo
13.
Biomolecules ; 9(12)2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31766707

RESUMEN

Tannic acid (TA) portrays a myriad of beneficial properties and has forthwith achieved incessant significance for its cytoprotective qualities in traditional and modern-day medicine. However, TA displays an ambiguous nature demonstrating anti-oxidant and pro-oxidant traits, beckoning further research. Although vast literature on the anti-proliferative effects of TA on cancer cell lines exist, the effects on normal cells remain unchartered. Herein, the cytoproliferative and anti-oxidant effects induced by TA in human embryonic kidney (Hek-293) cells were investigated. Data obtained from the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay demonstrated that TA increased the cell viability and cellular proliferation rate at higher concentrations. Hoechst assay, examining proliferation marker Ki67 supported these findings. DNA fragmentation and oxidative stress-inducers were specifically noted at IC25 and IC50 treatments via biochemical assays. This alluded to TA's pro-oxidant characteristics. However, the countervailing anti-oxidant defence mechanisms as the endogenous anti-oxidants and phase2 detoxification enzymes were significantly upregulated. Luminometry fortified the anti-oxidant capacity of TA, whereby executioner caspase-3/7 were not activated subservient to the activation of initiator caspases-8 and -9. Thus, proving that TA has anti-apoptotic traits, inter alia. Therefore, TA proved to harbour anti-oxidant, anti-apoptotic, and proliferative effects in Hek-293 cells with its partial cytotoxic responses being outweighed by its cytoprotective mechanisms.


Asunto(s)
Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Taninos/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Células HEK293 , Humanos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo
14.
Toxicon ; 141: 104-111, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29233736

RESUMEN

Fumonisin B1 (FB1) is a ubiquitous contaminant of maize that is epidemiologically linked to oesophageal cancer (OC) in South Africa. FB1-induced oxidative stress mediates toxicity in animals and human cell lines, but the effects relating to OC are limited. Given the species-specific effects of FB1, this study investigated FB1-mediated toxicity and oxidative stress in spindle-shaped N-cadherin (+) CD45 (-) osteoblastic (SNO) cells. Following exposure to FB1 (0-20 µM) for 48 h, mitochondrial membrane potential and intracellular reactive oxygen species (iROS) were measured (flow cytometry). Malondialdehyde concentration (lipid peroxidation) was determined spectrophotometrically. ATP and reduced glutathione (GSH) concentrations were quantified using luminometry, gene expression of SOD2 by qPCR and protein expression of SOD2, GPx1, Nrf2 and HSP70 by western blotting. Mitochondrial depolarization increased at 10 µM and 20 µM FB1, with a concomitant reduction in ATP, iROS and GSH at both concentrations. Lipid peroxidation increased at 10 µM FB1 exposure. While transcript levels of SOD2 were significantly increased, protein levels decreased. Protein expression of GPx1, Nrf2 and HSP70 increased. In contrast to the 10 µM and 20 µM FB1 treatment, mitochondrial depolarization decreased at 1.25 µM FB1. Intracellular ROS and ATP were decreased and lipid peroxidation increased. Decreased GSH was accompanied by a decrease in GPx1 protein levels, and increased HSP70 and Nrf2. SOD2 expression and protein levels were significantly increased. Overall these results indicate that FB1 caused increased ROS that were counteracted by engaging the antioxidant defense. Furthermore, the peculiar response at 1.25 µM FB1 is noteworthy, as compared to the other two concentrations tested.


Asunto(s)
Fumonisinas/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , Malondialdehído/metabolismo , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA