Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38000716

RESUMEN

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Encéfalo , MicroARNs/genética , MicroARNs/metabolismo , Emociones
2.
Sci Rep ; 10(1): 4566, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165725

RESUMEN

Peripheral biomarker and post-mortem brains studies have shown alterations of neuronal calcium sensor 1 (Ncs-1) expression in people with bipolar disorder or schizophrenia. However, its engagement by psychiatric medications and potential contribution to behavioral regulation remains elusive. We investigated the effect on Ncs-1 expression of valproic acid (VPA), a mood stabilizer used for the management of bipolar disorder. Treatment with VPA induced Ncs-1 gene expression in cell line while chronic administration of this drug to mice increased both Ncs-1 protein and mRNA levels in the mouse frontal cortex. Inhibition of histone deacetylases (HDACs), a known biochemical effect of VPA, did not alter the expression of Ncs-1. In contrast, pharmacological inhibition or genetic downregulation of glycogen synthase kinase 3ß (Gsk3ß) increased Ncs-1 expression, whereas overexpression of a constitutively active Gsk3ß had the opposite effect. Moreover, adeno-associated virus-mediated Ncs-1 overexpression in mouse frontal cortex caused responses similar to those elicited by VPA or lithium in tests evaluating social and mood-related behaviors. These findings indicate that VPA increases frontal cortex Ncs-1 gene expression as a result of Gsk3 inhibition. Furthermore, behavioral changes induced by Ncs-1 overexpression support a contribution of this mechanism in the regulation of behavior by VPA and potentially other psychoactive medications inhibiting Gsk3 activity.


Asunto(s)
Ansiedad/inducido químicamente , Lóbulo Frontal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ácido Valproico/efectos adversos , Animales , Ansiedad/genética , Ansiedad/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Masculino , Ratones , Células PC12 , Ratas , Conducta Social , Regulación hacia Arriba , Ácido Valproico/administración & dosificación
3.
J Neurosci ; 32(5): 1687-704, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302810

RESUMEN

New neurons are constantly being generated in the postnatal subventricular zone. They have to migrate long distances via the rostral migratory stream (RMS) to reach their final destination in the olfactory bulb (OB). In adults, these neuronal precursors migrate in chains, ensheathed by astrocytic processes, and travel toward the OB along blood vessels (BVs) that topographically outline the RMS. The molecular and cellular mechanisms leading to the development of the RMS and the formation of the migration-promoting vasculature scaffold in the adult mice remain unclear. We now reveal that astrocytes orchestrate the formation and structural reorganization of the vasculature scaffold in the RMS and, during early developmental stages, the RMS contains only a few BVs oriented randomly with respect to the migrating neuroblasts. The first parallel BVs appeared at the outer border of the RMS, where vascular endothelial growth factor (VEGF)-expressing astrocytes are located. Gain-of-function and loss-of-function experiments revealed that astrocyte-derived VEGF plays a crucial role in the formation and growth of new BVs. Real-time videoimaging also showed that the migration of neuronal precursors in the developing RMS differs substantially from neuronal displacement in the adult migratory stream partially because of not yet fully developed vasculature scaffold. The downregulation of VEGF in vivo, specifically in the astrocytes of the developing RMS, affected the development of the vasculature scaffold and led to alterations in neuroblast migration. Altogether, our results demonstrate that astrocytes orchestrate the formation and growth of parallel BVs, crucial migration-promoting scaffolds in the adult migratory stream, via VEGF signaling.


Asunto(s)
Astrocitos/fisiología , Encéfalo/crecimiento & desarrollo , Movimiento Celular/fisiología , Circulación Cerebrovascular/fisiología , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Animales Recién Nacidos , Encéfalo/irrigación sanguínea , Encéfalo/citología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA