Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Dev Cell ; 58(10): 847-865.e10, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37098350

RESUMEN

Nuclear envelope (NE) assembly defects cause chromosome fragmentation, cancer, and aging. However, major questions about the mechanism of NE assembly and its relationship to nuclear pathology are unresolved. In particular, how cells efficiently assemble the NE starting from vastly different, cell type-specific endoplasmic reticulum (ER) morphologies is unclear. Here, we identify a NE assembly mechanism, "membrane infiltration," that defines one end of a continuum with another NE assembly mechanism, "lateral sheet expansion," in human cells. Membrane infiltration involves the recruitment of ER tubules or small sheets to the chromatin surface by mitotic actin filaments. Lateral sheet expansion involves actin-independent envelopment of peripheral chromatin by large ER sheets that then extend over chromatin within the spindle. We propose a "tubule-sheet continuum" model that explains the efficient NE assembly from any starting ER morphology, the cell type-specific patterns of nuclear pore complex (NPC) assembly, and the obligatory NPC assembly defect of micronuclei.


Asunto(s)
Cromatina , Membrana Nuclear , Humanos , Citoesqueleto de Actina , Actinas , Envejecimiento
2.
Mol Biol Cell ; 30(14): 1705-1715, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31067156

RESUMEN

Numerous studies have highlighted the self-centering activities of individual microtubule (MT) arrays in animal cells, but relatively few works address the behavior of multiple arrays that coexist in a common cytoplasm. In multinucleated Dictyostelium discoideum cells, each centrosome organizes a radial MT network, and these networks remain separate from one another. This feature offers an opportunity to reveal the mechanism(s) responsible for the positioning of multiple centrosomes. Using a laser microbeam to eliminate one of the two centrosomes in binucleate cells, we show that the unaltered array is rapidly repositioned at the cell center. This result demonstrates that each MT array is constantly subject to centering forces and infers a mechanism to balance the positions of multiple arrays. Our results address the limited actions of three kinesins and a cross-linking MAP that are known to have effects in maintaining MT organization and suggest a simple means used to keep the arrays separated.


Asunto(s)
Centrosoma/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Interfase , Terapia por Láser , Fenómenos Biomecánicos , Núcleo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Mutación/genética , Proteínas Protozoarias/metabolismo
3.
Nature ; 561(7724): 551-555, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30232450

RESUMEN

Defects in the architecture or integrity of the nuclear envelope are associated with a variety of human diseases1. Micronuclei, one common nuclear aberration, are an origin for chromothripsis2, a catastrophic mutational process that is commonly observed in cancer3-5. Chromothripsis occurs after micronuclei spontaneously lose nuclear envelope integrity, which generates chromosome fragmentation6. Disruption of the nuclear envelope exposes DNA to the cytoplasm and initiates innate immune proinflammatory signalling7. Despite its importance, the basis of the fragility of the micronucleus nuclear envelope  is not known. Here we show that micronuclei undergo defective nuclear envelope assembly. Only 'core' nuclear envelope proteins8,9 assemble efficiently on lagging chromosomes, whereas 'non-core' nuclear envelope proteins8,9, including nuclear pore complexes (NPCs), do not. Consequently, micronuclei fail to properly import key proteins that are necessary for the integrity of the nuclear envelope and genome. We show that spindle microtubules block assembly of NPCs and other non-core nuclear envelope proteins on lagging chromosomes, causing an irreversible defect in nuclear envelope assembly. Accordingly, experimental manipulations that position missegregated chromosomes away from the spindle correct defective nuclear envelope assembly, prevent spontaneous nuclear envelope disruption, and suppress DNA damage in micronuclei. Thus, during mitotic exit in metazoan cells, chromosome segregation and nuclear envelope assembly are only loosely coordinated by the timing of mitotic spindle disassembly. The absence of precise checkpoint controls may explain why errors during mitotic exit are frequent and often trigger catastrophic genome rearrangements4,5.


Asunto(s)
Cromotripsis , Micronúcleos con Defecto Cromosómico , Mitosis , Membrana Nuclear/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Segregación Cromosómica , Cromosomas Humanos/metabolismo , ADN/metabolismo , Daño del ADN , Inestabilidad Genómica , Humanos , Microtúbulos/metabolismo , Poro Nuclear/metabolismo , Huso Acromático/metabolismo
4.
Curr Biol ; 28(9): 1344-1356.e5, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29706521

RESUMEN

Chromosome missegregation during mitosis or meiosis is a hallmark of cancer and the main cause of prenatal death in humans. The gain or loss of specific chromosomes is thought to be random, with cell viability being essentially determined by selection. Several established pathways including centrosome amplification, sister-chromatid cohesion defects, or a compromised spindle assembly checkpoint can lead to chromosome missegregation. However, how specific intrinsic features of the kinetochore-the critical chromosomal interface with spindle microtubules-impact chromosome segregation remains poorly understood. Here we used the unique cytological attributes of female Indian muntjac, the mammal with the lowest known chromosome number (2n = 6), to characterize and track individual chromosomes with distinct kinetochore size throughout mitosis. We show that centromere and kinetochore functional layers scale proportionally with centromere size. Measurement of intra-kinetochore distances, serial-section electron microscopy, and RNAi against key kinetochore proteins confirmed a standard structural and functional organization of the Indian muntjac kinetochores and revealed that microtubule binding capacity scales with kinetochore size. Surprisingly, we found that chromosome segregation in this species is not random. Chromosomes with larger kinetochores bi-oriented more efficiently and showed a 2-fold bias to congress to the equator in a motor-independent manner. Despite robust correction mechanisms during unperturbed mitosis, chromosomes with larger kinetochores were also strongly biased to establish erroneous merotelic attachments and missegregate during anaphase. This bias was impervious to the experimental attenuation of polar ejection forces on chromosome arms by RNAi against the chromokinesin Kif4a. Thus, kinetochore size is an important determinant of chromosome segregation fidelity.


Asunto(s)
Centrómero , Segregación Cromosómica , Cromosomas de los Mamíferos , Cinetocoros , Microtúbulos/fisiología , Mitosis , Ciervo Muntjac/fisiología , Animales , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Huso Acromático
5.
PLoS Genet ; 13(5): e1006784, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505193

RESUMEN

INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animales , Línea Celular , Drosophila/genética , Drosophila/metabolismo , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Mitosis , Ubiquitinación
6.
Curr Biol ; 20(14): 1277-82, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20656208

RESUMEN

Supernumerary centrioles lead to abnormal mitosis, which in turn promotes tumorigenesis. Thus, centriole duplication must be coordinated with the cell cycle to ensure that the number of centrioles in the cell doubles precisely during each cell cycle. However, in some transformed cells, centrioles undergo multiple rounds of duplication (reduplication) during prolonged interphase. Mechanisms responsible for centriole reduplication are poorly understood. Here, we report that centrioles reduplicate consistently in cancerous and nontransformed human cells during G2 arrests and that this reduplication requires the activity of Polo-like kinase 1 (Plk1). We also find that a cell's ability to reduplicate centrioles during S arrests depends on the presence of activated (Thr210-phosphorylated) Plk1 at the centrosome. In the absence of activated Plk1, nascent procentrioles remain associated with mother centrioles, which prevents centriole reduplication. In contrast, if Plk1(pT210) appears at the centrosome, procentrioles mature, disengage from mother centrioles, and ultimately duplicate. Plk1 activity is not required for the assembly of procentrioles, however. Thus, the role of Plk1 is to coordinate the centriole duplication cycle with the cell cycle. Activation of Plk1 during late S/G2 induces procentriole maturation, and after this point, the centriole cycle can be completed autonomously, even in the absence of cell-cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos/fisiología , Interfase/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Células HeLa , Humanos , Microscopía Confocal , Fosforilación , Quinasa Tipo Polo 1
7.
Curr Biol ; 19(22): R1032-4, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19948139

RESUMEN

Recent studies reveal that the precise regulation of microtubule dynamics is essential for an error-free mitosis. Kinetochore microtubule attachments that are too stable increase the rate of chromosome mis-segregation, a leading cause of chromosomal instability in tumors.


Asunto(s)
Mitosis , Inestabilidad Cromosómica , Humanos , Cinetocoros , Microtúbulos
8.
J Cell Biol ; 185(1): 101-14, 2009 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-19349582

RESUMEN

Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.


Asunto(s)
Proteínas Portadoras/fisiología , Centriolos/metabolismo , Fosfoproteínas/fisiología , Combinación Trimetoprim y Sulfametoxazol/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Centriolos/ultraestructura , Secuencia Conservada , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Citometría de Flujo , Células HeLa , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Filogenia , Estructura Terciaria de Proteína , Fase S , Alineación de Secuencia , Proteína p53 Supresora de Tumor/metabolismo
9.
Cell ; 133(6): 1032-42, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18555779

RESUMEN

Centrosome amplification is a common feature of many cancer cells, and it has been previously proposed that centrosome amplification can drive genetic instability and so tumorigenesis. To test this hypothesis, we generated Drosophila lines that have extra centrosomes in approximately 60% of their somatic cells. Many cells with extra centrosomes initially form multipolar spindles, but these spindles ultimately become bipolar. This requires a delay in mitosis that is mediated by the spindle assembly checkpoint (SAC). As a result of this delay, there is no dramatic increase in genetic instability in flies with extra centrosomes, and these flies maintain a stable diploid genome over many generations. The asymmetric division of the larval neural stem cells, however, is compromised in the presence of extra centrosomes, and larval brain cells with extra centrosomes can generate metastatic tumors when transplanted into the abdomens of wild-type hosts. Thus, centrosome amplification can initiate tumorigenesis in flies.


Asunto(s)
Centrosoma/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Cinesinas/metabolismo , Larva/citología , Larva/genética , Mitosis , Proteínas Serina-Treonina Quinasas , Huso Acromático
10.
Nat Cell Biol ; 10(6): 748-51, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18469805

RESUMEN

Using laser microsurgery and cell fusion we have explored how additional centrosomes and/or chromosomes influence the duration of mitosis in human cells. We found that doubling the chromosome number added approximately 10 min to a 20 min division, whereas doubling the number of centrosomes added approximately 30 min more. Extra centrosomes and/or chromosomes prolong mitosis by delaying satisfaction of the spindle assembly checkpoint. Thus mitosis can be prolonged by non-genetic means and extra chromosomes and centrosomes probably contribute to the elevated mitotic index seen in many tumours.


Asunto(s)
Centrosoma/ultraestructura , Cromosomas/ultraestructura , Mitosis , Animales , Ciclo Celular , Línea Celular , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Cromosomas/metabolismo , Humanos , Cinetocoros/ultraestructura , Microscopía por Video , Microtúbulos/química , Modelos Biológicos , Huso Acromático , Factores de Tiempo
11.
Nat Cell Biol ; 9(5): 516-22, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17435749

RESUMEN

Intricate interactions between kinetochores and microtubules are essential for the proper distribution of chromosomes during mitosis. A crucial long-standing question is how vertebrate kinetochores generate chromosome motion while maintaining attachments to the dynamic plus ends of the multiple kinetochore MTs (kMTs) in a kinetochore fibre. Here, we demonstrate that individual kMTs in PtK(1) cells are attached to the kinetochore outer plate by several fibres that either embed the microtubule plus-end tips in a radial mesh, or extend out from the outer plate to bind microtubule walls. The extended fibres also interact with the walls of nearby microtubules that are not part of the kinetochore fibre. These structural data, in combination with other recent reports, support a network model of kMT attachment wherein the fibrous network in the unbound outer plate, including the Hec1-Ndc80 complex, dissociates and rearranges to form kMT attachments.


Asunto(s)
Células Epiteliales/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Animales , Sitios de Unión , Línea Celular , Células Epiteliales/ultraestructura , Cinetocoros/ultraestructura , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Moleculares , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Tomografía Computarizada por Rayos X , Vertebrados
12.
J Cell Biol ; 176(2): 173-82, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17227892

RESUMEN

How centrosome removal or perturbations of centrosomal proteins leads to G1 arrest in untransformed mammalian cells has been a mystery. We use microsurgery and laser ablation to remove the centrosome from two types of normal human cells. First, we find that the cells assemble centrioles de novo after centrosome removal; thus, this phenomenon is not restricted to transformed cells. Second, normal cells can progress through G1 in its entirety without centrioles. Therefore, the centrosome is not a necessary, integral part of the mechanisms that drive the cell cycle through G1 into S phase. Third, we provide evidence that centrosome loss is, functionally, a stress that can act additively with other stresses to arrest cells in G1 in a p38-dependent fashion.


Asunto(s)
Ciclo Celular/fisiología , Centriolos/fisiología , Centrosoma/fisiología , Células Epiteliales/metabolismo , Bromodesoxiuridina/metabolismo , Proteínas de Unión al Calcio/análisis , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Células Cultivadas , Centriolos/química , Centriolos/ultraestructura , Proteínas Cromosómicas no Histona/análisis , Inhibidores Enzimáticos/farmacología , Células Epiteliales/citología , Células Epiteliales/ultraestructura , Fase G1/fisiología , Humanos , Imidazoles/farmacología , Luz , Microscopía Electrónica , Piridinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Biochem Pharmacol ; 71(1-2): 203-13, 2005 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-16263093

RESUMEN

Methotrexate (MTX) resistance in mitoxantrone-selected MCF7/MX cells and in MTX-selected CEM/MTX cells is associated with reduced drug accumulation, albeit caused by different mechanisms. In addition, in both resistant cell lines the proportion of active long-chain MTX-polyglutamate (MTX-PG) metabolites is reduced relative to that in the respective parental cell line. Previous studies by others have implied that increased lysosomal uptake could affect the rate of MTX-PG hydrolysis, and hence the length distribution of the polyglutamate chains. However, in the two cell line pairs studied, the number of lysosomes per cell was not different between the corresponding parental and resistant cells. Instead, we observed a two- to three-fold increased facilitative uptake of MTX-Glu4 by the lysosomes from these two independently derived MTX-resistant cell lines, compared to uptake by lysosomes from their corresponding parental cells. Enhanced lysosomal uptake of MTX-Glu4 was reflected in an increased maximal uptake velocity, without a change in the apparent substrate affinity. In addition, the rate of MTX efflux from lysosomes from CEM/MTX cells was two-fold faster than from lysosomes from CEM cells. Consistent with this observation, the relative amount of short-chain MTX-Glu(1+2) species, as a fraction of the total amount of all MTX-Glu(1-4) species combined, was only half as large in lysosomes from CEM/MTX cells as in lysosomes from CEM cells. Together, these results suggest the possibility that increased lysosomal uptake, and hence enhanced sequestration of MTX-PGs in resistant cells, contributes to the development of high-level MTX resistance by decreasing the cytosolic levels of MTX-PGs.


Asunto(s)
Resistencia a Antineoplásicos , Lisosomas/metabolismo , Metotrexato/metabolismo , Ácido Poliglutámico/metabolismo , Transporte Biológico , Línea Celular Tumoral , Humanos , Hidrólisis , Metotrexato/farmacología , Microscopía Fluorescente , Ósmosis , beta-N-Acetilhexosaminidasas/metabolismo
14.
Mol Biol Cell ; 16(7): 3334-40, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15857957

RESUMEN

Overexpression of dynein fragments in Dictyostelium induces the movement of the entire interphase microtubule array. Centrosomes in these cells circulate through the cytoplasm at rates between 0.4 and 2.5 microm/s and are trailed by a comet-tail like arrangement of the microtubule array. Previous work suggested that these cells use a dynein-mediated pulling mechanism to generate this dramatic movement and that similar forces are at work to maintain the interphase MTOC position in wild-type cells. In the present study, we address the nature of the forces used to produce microtubule movement. We have used a laser microbeam to sever the connection between the motile centrosomes and trailing microtubules, demonstrating that the major force for such motility results from a pushing on the microtubules. We eliminate the possibility that microtubule assembly/disassembly reactions are significant contributors to this motility and suggest that the cell cortex figures prominently in locating force-producing molecules. Our findings indicate that interphase microtubules in Dictyostelium are subject to both dynein- and kinesin-like forces and that these act in concert to maintain centrosome position in the cell and to support the radial character of the microtubule network.


Asunto(s)
Microtúbulos/química , Actinas/metabolismo , Animales , Movimiento Celular , Tamaño de la Célula , Centrosoma/metabolismo , Citoplasma/metabolismo , Dictyostelium , Dineínas/química , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Interfase , Cinética , Rayos Láser , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos
15.
J Cell Biol ; 167(5): 831-40, 2004 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-15569709

RESUMEN

It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.


Asunto(s)
Centrosoma/metabolismo , Cinetocoros/metabolismo , Mitosis/fisiología , Huso Acromático/metabolismo , Animales , Línea Celular , Polaridad Celular/fisiología , Segregación Cromosómica/genética , Drosophila melanogaster , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis/genética , Modelos Biológicos , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/genética , Tubulina (Proteína)/metabolismo
16.
Biochemistry ; 43(42): 13525-31, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15491159

RESUMEN

Conventional kinesin is a multifunctional motor protein that transports numerous organelles along microtubules. The specificity of kinesin-cargo binding is thought to depend on the type(s) of light chains that a kinesin molecule contains. We have shown previously that different isoforms of kinesin light chains are associated with different types of cargo, mitochondria and membranes of the Golgi complex. Here, we provide evidence that the two light chains present within each kinesin molecule are always of the same type. Further, we demonstrate that kinesin heavy chains interact with nascent light-chain polypeptides on ribosomes. These data suggest that incorporation of the two identical light chains into a single kinesin molecule most likely occurs cotranslationally.


Asunto(s)
Cinesinas/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Motoras Moleculares/química , Animales , Western Blotting , Línea Celular , Chlorocebus aethiops , Dimerización , Humanos , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Péptidos/metabolismo , Polirribosomas/química , Polirribosomas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratas , Relación Estructura-Actividad
17.
Curr Biol ; 14(15): 1330-40, 2004 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-15296749

RESUMEN

INTRODUCTION: During anaphase B in mitosis, polymerization and sliding of overlapping spindle microtubules (MTs) contribute to the outward movement the spindle pole bodies (SPBs). To probe the mechanism of spindle elongation, we combine fluorescence microscopy, photobleaching, and laser microsurgery in the fission yeast Schizosaccharomyces pombe. RESULTS: We demonstrate that a green laser cuts intracellular structures in yeast cells with high spatial specificity. By using laser microsurgery, we cut mitotic spindles labeled with GFP-tubulin at various stages of anaphase B. Although cutting generally caused early anaphase spindles to disassemble, midanaphase spindle fragments continued to elongate. In particular, when the spindle was cut near a SPB, the larger spindle fragment continued to elongate in the direction of the cut. Photobleach marks showed that sliding of overlapping midzone MTs was responsible for the elongation of the spindle fragment. Spindle midzone fragments not connected to either of the two spindle poles also elongated. Equatorial microtubule organizing center (eMTOC) activity was not affected in cells with one detached pole but was delayed or absent in cells with two detached poles. CONCLUSIONS: These studies reveal that the spindle midzone is necessary and sufficient for the stabilization of MT ends and for spindle elongation. By contrast, SPBs are not required for elongation, but they contribute to the attachment of the nuclear envelope and chromosomes to the spindle, and to cell cycle progression. Laser microsurgery provides a means by which to dissect the mechanics of the spindle in yeast.


Asunto(s)
Anafase/fisiología , Microtúbulos/fisiología , Schizosaccharomyces/citología , Huso Acromático/fisiología , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Fluorescentes Verdes , Quimografía , Terapia por Láser/métodos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Microcirugia/métodos , Schizosaccharomyces/genética , Huso Acromático/efectos de la radiación , Tubulina (Proteína)/metabolismo
18.
Nat Cell Biol ; 6(3): 232-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14767480

RESUMEN

For accurate segregation of chromosomes during cell division, microtubule fibres must attach sister kinetochores to opposite poles of the mitotic spindle (bi-orientation). Aurora kinases are linked to oncogenesis and have been implicated in the regulation of chromosome-microtubule attachments. Although loss of Aurora kinase activity causes an accumulation of mal-orientated chromosomes in dividing cells, it is not known how the active kinase corrects improper chromosome attachments. The use of reversible small-molecule inhibitors allows activation of protein function in living vertebrate cells with temporal control. Here we show that by removal of small-molecule inhibitors, controlled activation of Aurora kinase during mitosis can correct chromosome attachment errors by selective disassembly of kinetochore-microtubule fibres, rather than by alternative mechanisms involving initial release of microtubules from either kinetochores or spindle poles. Observation of chromosomes and microtubule dynamics with real-time high-resolution microscopy showed that mal-orientated, but not bi-orientated, chromosomes move to the spindle pole as both kinetochore-microtubule fibres shorten, followed by alignment at the metaphase plate. Our results provide direct evidence for a mechanism required for the maintenance of genome integrity during cell division.


Asunto(s)
Segregación Cromosómica/fisiología , Cromosomas/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/fisiología , Animales , Aurora Quinasas , División Celular/efectos de los fármacos , División Celular/fisiología , Línea Celular , Segregación Cromosómica/efectos de los fármacos , Cromosomas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas Fluorescentes Verdes , Cinetocoros/enzimología , Proteínas Luminiscentes , Microscopía Confocal , Microtúbulos/enzimología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , Huso Acromático/efectos de los fármacos , Tionas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA