Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 15(1): 108, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224649

RESUMEN

BACKGROUND: Metabolic rewiring in microbes is an economical and sustainable strategy for synthesizing valuable natural terpenes. Terpenes are the largest class of nature-derived specialized metabolites, and many have valuable pharmaceutical or biological activity. Squalene, a medicinal terpene, is used as a vaccine adjuvant to improve the efficacy of vaccines, including pandemic coronavirus disease 2019 (COVID-19) vaccines, and plays diverse biological roles as an antioxidant and anticancer agent. However, metabolic rewiring interferes with inherent metabolic pathways, often in a way that impairs the cellular growth and fitness of the microbial host. In particular, as the key starting molecule for producing various compounds including squalene, acetyl-CoA is involved in numerous biological processes with tight regulation to maintain metabolic homeostasis, which limits redirection of metabolic fluxes toward desired products. RESULTS: In this study, focusing on the recycling of surplus metabolic energy stored in lipid droplets, we show that the metabolic recycling of the surplus energy to acetyl-CoA can increase squalene production in yeast, concomitant with minimizing the metabolic interferences in inherent pathways. Moreover, by integrating multiple copies of the rate-limiting enzyme and implementing N-degron-dependent protein degradation to downregulate the competing pathway, we systematically rewired the metabolic flux toward squalene, enabling remarkable squalene production (1024.88 mg/L in a shake flask). Ultimately, further optimization of the fed-batch fermentation process enabled remarkable squalene production of 6.53 g/L. CONCLUSIONS: Our demonstration of squalene production via engineered yeast suggests that plant- or animal-based supplies of medicinal squalene can potentially be complemented or replaced by industrial fermentation. This approach will also provide a universal strategy for the more stable and sustainable production of high-value terpenes.

2.
Metab Eng ; 44: 246-252, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28974378

RESUMEN

Starch is a natural energy storage compound and is hypothesized to be a high-energy density chemical compound or solar fuel. In contrast to industrial hydrolysis of starch to glucose, an alternative ATP-free phosphorylation of starch was designed to generate cost-effective glucose 6-phosphate by using five thermophilic enzymes (i.e., isoamylase, alpha-glucan phosphorylase, 4-α-glucanotransferase, phosphoglucomutase, and polyphosphate glucokinase). This enzymatic phosphorolysis is energetically advantageous because the energy of α-1,4-glycosidic bonds among anhydroglucose units is conserved in the form of phosphorylated glucose. Furthermore, we demonstrated an in vitro 17-thermophilic enzyme pathway that can convert all glucose units of starch, regardless of branched and linear contents, with water to hydrogen at a theoretic yield (i.e., 12 H2 per glucose), three times of the theoretical yield from dark microbial fermentation. The use of a biomimetic electron transport chain enabled to achieve a maximum volumetric productivity of 90.2mmol of H2/L/h at 20g/L starch. The complete oxidation of starch to hydrogen by this in vitro synthetic (enzymatic) biosystem suggests that starch as a natural solar fuel becomes a high-density hydrogen storage compound with a gravimetric density of more than 14% H2-based mass and an electricity density of more than 3000Wh/kg of starch.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Hidrógeno/química , Ingeniería Metabólica/métodos , Modelos Químicos , Almidón/química , Agua/química , Oxidación-Reducción , Proteínas Recombinantes/química
3.
Biotechnol Bioeng ; 113(2): 275-82, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26241217

RESUMEN

Sugar phosphates cannot be produced easily by microbial fermentation because negatively-charged compounds cannot be secreted across intact cell membrane. D-xylulose 5-phosphate (Xu5P), a very expensive sugar phosphate, was synthesized from D-xylose and polyphosphate catalyzed by enzyme cascades in one pot. The synthetic enzymatic pathway comprised of xylose isomerase and xylulokinase was designed to produce Xu5P, along with a third enzyme, polyphosphate kinase, responsible for in site ATP regeneration. Due to the promiscuous activity of the ATP-based xylulokinase from a hyperthermophilic bacterium Thermotoga maritima on polyphosphate, the number of enzymes in the pathway was minimized to two without polyphosphate kinase. The reactions catalyzed by the two-enzyme and three-enzyme pathways were compared for Xu5P production, and the reaction conditions were optimized by examining effects of reaction temperature, enzyme ratio and substrate concentration. The optimized two-enzyme system produced 32 mM Xu5P from 50 mM xylose and polyphosphate after 36 h at 45°C. Biosynthesis of less costly Xu5P from D-xylose and polyphosphate could be highly feasible via this minimized two-enzyme pathway.


Asunto(s)
Enzimas/metabolismo , Pentosafosfatos/biosíntesis , Polifosfatos/metabolismo , Xilosa/metabolismo , Adenosina Trifosfato/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Temperatura , Thermotoga maritima/enzimología
4.
J Ind Microbiol Biotechnol ; 40(7): 661-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23584458

RESUMEN

Xylulokinase (XK, E.C. 2.7.1.17) is one of the key enzymes in xylose metabolism and it is essential for the activation of pentoses for the sustainable production of biocommodities from biomass sugars. The open reading frame (TM0116) from the hyperthermophilic bacterium Thermotoga maritima MSB8 encoding a putative xylulokinase were cloned and expressed in Escherichia coli BL21 Star (DE3) in the Luria-Bertani and auto-inducing high-cell-density media. The basic biochemical properties of this thermophilic XK were characterized. This XK has the optimal temperature of 85 °C. Under a suboptimal condition of 60 °C, the k cat was 83 s⁻¹, and the K(m) values for xylulose and ATP were 1.24 and 0.71 mM, respectively. We hypothesized that this XK could work on polyphosphate possibly because this ancestral thermophilic microorganism utilizes polyphosphate to regulate the Embden-Meyerhof pathway and its substrate-binding residues are somewhat similar to those of other ATP/polyphosphate-dependent kinases. This XK was found to work on low-cost polyphosphate, exhibiting 41 % of its specific activity on ATP. This first ATP/polyphosphate XK could have a great potential for xylose utilization in thermophilic ethanol-producing microorganisms and cell-free biosystems for low-cost biomanufacturing without the use of ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polifosfatos/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Animales , Gatos , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Glucólisis , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Temperatura , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Xilosa/metabolismo , Xilulosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA