Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cells ; 11(14)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883684

RESUMEN

The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/ß1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.


Asunto(s)
Colestasis , Células Endoteliales , Animales , Colestasis/metabolismo , Cirrosis Hepática/metabolismo , Organoides/metabolismo
2.
Elife ; 92020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32571478

RESUMEN

Generation of autologous human motor neurons holds great promise for cell replacement therapy to treat spinal cord injury (SCI). Direct conversion allows generation of target cells from somatic cells, however, current protocols are not practicable for therapeutic purposes since converted cells are post-mitotic that are not scalable. Therefore, therapeutic effects of directly converted neurons have not been elucidated yet. Here, we show that human fibroblasts can be converted into induced motor neurons (iMNs) by sequentially inducing POU5F1(OCT4) and LHX3. Our strategy enables scalable production of pure iMNs because of the transient acquisition of proliferative iMN-intermediate cell stage which is distinct from neural progenitors. iMNs exhibited hallmarks of spinal motor neurons including transcriptional profiles, electrophysiological property, synaptic activity, and neuromuscular junction formation. Remarkably, transplantation of iMNs showed therapeutic effects, promoting locomotor functional recovery in rodent SCI model. Together, our advanced strategy will provide tools to acquire sufficient human iMNs that may represent a promising cell source for personalized cell therapy.


Asunto(s)
Fibroblastos/fisiología , Regulación de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Locomoción/fisiología , Neuronas Motoras/trasplante , Factor 3 de Transcripción de Unión a Octámeros/genética , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/terapia , Factores de Transcripción/genética , Animales , Trasplante de Células , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas con Homeodominio LIM/metabolismo , Masculino , Ratones , Ratones Desnudos , Neuronas Motoras/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Factores de Transcripción/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 40(4): e105-e113, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32075417

RESUMEN

OBJECTIVE: Vascular progenitor cells (VPCs), which are able to differentiate into both endothelial cells and smooth muscle cells, have the potential for treatment of ischemic diseases. Generated by pluripotent stem cells, VPCs carry the risk of tumorigenicity in clinical application. This issue could be resolved by direct lineage conversion, the induction of functional cells from another lineage by using only lineage-restricted transcription factors. Here, we show that induced VPCs (iVPCs) can be generated from fibroblasts by ETS (E-twenty six) transcription factors, Etv2 and Fli1. Approach and Results: Mouse fibroblasts were infected with lentivirus encoding Etv2 and Fli1. Cell colonies appeared in Fli1- and Etv2/Fli1-infected groups and were mechanically picked. The identity of cell colonies was confirmed by proliferation assay and reverse-transcription polymerase chain reaction with vascular markers. Etv2/Fli1- infected cell colonies were sorted by CD144 (also known as CDH5, VE-cadherin). We defined that CD144-positive iVPCs maintained its own population and expanded stably at multiple passages. iVPCs could differentiate into functional endothelial cells and smooth muscle cells by a defined medium. The functionalities of iVPC-derived endothelial cells and smooth muscle cells were confirmed by analyzing LDL (low-density lipoprotein) uptake, carbachol-induced contraction, and tube formation in vitro. Transplantation of iVPCs into the ischemic hindlimb model enhanced blood flow without tumor formation in vivo. Human iVPCs were generated by human ETS transcription factors ETV2 and FLI1. CONCLUSIONS: We demonstrate that ischemic disease curable iVPCs, which have self-renewal and bipotency, can be generated from mouse fibroblasts by enforced ETS family transcription factors, Etv2 and Fli1 expression. Our simple strategy opens insights into stem cell-based ischemic disease therapy.


Asunto(s)
Fibroblastos/citología , Isquemia/fisiopatología , Proteína Proto-Oncogénica c-fli-1/fisiología , Células Madre/fisiología , Factores de Transcripción/fisiología , Animales , Antígenos CD , Cadherinas , Diferenciación Celular , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Células Endoteliales/citología , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Miocitos del Músculo Liso/citología , Trasplante de Células Madre , Células Madre/inmunología
4.
PLoS One ; 14(8): e0221085, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404112

RESUMEN

Direct conversion from fibroblasts to generate hepatocyte like-cells (iHeps) bypassing the pluripotent state has been described in previous reports as an attractive method acquiring hepatocytes for cell-based therapy. The limited proliferation of iHeps, however, has hampered it uses in cell-based therapy. Since hepatic stem cells (HepSCs) possess self-renewal and bipotency with the capacity to differentiate into both hepatocytes and cholangiocytes, they have therapeutic potential for treating liver disease. Here, we investigated the therapeutic effects of induced HepSCs (iHepSCs) on a carbon tetrachloride (CCl4)-induced liver fibrosis model. We demonstrate that Oct4 and Hnf4a are sufficient to convert fibroblasts into expandable iHepSCs. Hepatocyte-like cells derived from iHepSCs (iHepSC-HEPs) exhibit the typical morphology of hepatocytes and hepatic functions, including glycogen storage, low-density lipoprotein (LDL) uptake, Indocyanine green (ICG) detoxification, drug metabolism, urea production, and albumin secretion. iHepSCs-derived cholangiocyte-like cells (iHepSC-CLCs) expressed cholangiocyte-specific markers and formed cysts and tubule-like structures with apical-basal polarity and secretory function in three-dimensional culture condition. Furthermore, iHepSCs showed anti-inflammatory and anti-fibrotic effects in CCl4-induced liver fibrosis. This study demonstrates that Oct4 and Hnf4α-induced HepSCs show typical hepatic and biliary functionality in vitro. It also presents the therapeutic effect of iHepSCs in liver fibrosis. Therefore, directly converting iHepSCs from somatic cells may facilitate the development of patient-specific cell-based therapy for chronic liver damage.


Asunto(s)
Intoxicación por Tetracloruro de Carbono , Factor Nuclear 4 del Hepatocito , Células Madre Pluripotentes Inducidas , Cirrosis Hepática , Hígado , Lesión Pulmonar , Factor 3 de Transcripción de Unión a Octámeros , Trasplante de Células Madre , Animales , Intoxicación por Tetracloruro de Carbono/genética , Intoxicación por Tetracloruro de Carbono/metabolismo , Intoxicación por Tetracloruro de Carbono/terapia , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/terapia , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/genética , Lesión Pulmonar/metabolismo , Masculino , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo
5.
PLoS One ; 12(11): e0178881, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29161257

RESUMEN

Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule-induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glucógeno Sintasa Quinasa 3/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colforsina/administración & dosificación , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Imagen Óptica , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Ratas , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
EMBO J ; 34(23): 2971-83, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26497893

RESUMEN

The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.


Asunto(s)
Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oligodendroglía/metabolismo , Oligodendroglía/fisiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Células Madre/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/citología , Inmunohistoquímica , Cariotipo , Masculino , Ratones , Ratones SCID , Factor 3 de Transcripción de Unión a Octámeros/genética , Oligodendroglía/citología , Ratas , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/genética , Trasplante de Células Madre , Células Madre/citología , Células Madre/fisiología
7.
Haematologica ; 100(1): 32-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326431

RESUMEN

Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential.


Asunto(s)
Diferenciación Celular , Células Eritroides/citología , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Biomarcadores/metabolismo , Metilación de ADN , Epigenómica , Células Eritroides/metabolismo , Sangre Fetal/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Cell Rep ; 8(6): 1697-1703, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25220454

RESUMEN

The differentiation capability of induced pluripotent stem cells (iPSCs) toward certain cell types for disease modeling and drug screening assays might be influenced by their somatic cell of origin. Here, we have compared the neural induction of human iPSCs generated from fetal neural stem cells (fNSCs), dermal fibroblasts, or cord blood CD34(+) hematopoietic progenitor cells. Neural progenitor cells (NPCs) and neurons could be generated at similar efficiencies from all iPSCs. Transcriptomics analysis of the whole genome and of neural genes revealed a separation of neuroectoderm-derived iPSC-NPCs from mesoderm-derived iPSC-NPCs. Furthermore, we found genes that were similarly expressed in fNSCs and neuroectoderm, but not in mesoderm-derived iPSC-NPCs. Notably, these neural signatures were retained after transplantation into the cortex of mice and paralleled with increased survival of neuroectoderm-derived cells in vivo. These results indicate distinct origin-dependent neural cell identities in differentiated human iPSCs both in vitro and in vivo.


Asunto(s)
Encéfalo/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Células Cultivadas , Sangre Fetal/citología , Sangre Fetal/metabolismo , Feto/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Mesodermo/citología , Ratones , Ratones Endogámicos NOD , Microscopía Confocal , Placa Neural/citología
9.
Biomaterials ; 33(29): 6952-64, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22809643

RESUMEN

Surface modification of tissue engineering scaffolds and substrates is required for improving the efficacy of stem cell therapy by generating physicochemical stimulation promoting proliferation and differentiation of stem cells. However, typical surface modification methods including chemical conjugation or physical absorption have several limitations such as multistep, complicated procedures, surface denaturation, batch-to-batch inconsistencies, and low surface conjugation efficiency. In this study, we report a mussel-inspired, biomimetic approach to surface modification for efficient and reliable manipulation of human neural stem cell (NSC) differentiation and proliferation. Our study demonstrates that polydopamine coating facilitates highly efficient, simple immobilization of neurotrophic growth factors and adhesion peptides onto polymer substrates. The growth factor or peptide-immobilized substrates greatly enhance differentiation and proliferation of human NSCs (human fetal brain-derived NSCs and human induced pluripotent stem cell-derived NSCs) at a level comparable or greater than currently available animal-derived coating materials (Matrigel) with safety issues. Therefore, polydopamine-mediated surface modification can provide a versatile platform technology for developing chemically defined, safe, functional substrates and scaffolds for therapeutic applications of human NSCs.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Indoles/química , Células-Madre Neurales/citología , Polímeros/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Biomimética/métodos , Adhesión Celular , Diferenciación Celular , Colágeno/química , Combinación de Medicamentos , Humanos , Inmunohistoquímica/métodos , Laminina/química , Ratones , Modelos Químicos , Neuronas/citología , Péptidos/química , Proteoglicanos/química , Propiedades de Superficie
10.
Stem Cells ; 30(3): 570-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213586

RESUMEN

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by retroviral overexpression of the transcription factors Oct4, Sox2, Klf4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk for chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC, albeit at lower efficiency. To elucidate the influence of factor reduction on subsequent differentiation, we compared the efficiency of neuronal differentiation in iPSC generated from postnatal murine neural stem cells with either one (Oct4; iPSC(1F-NSC) ), two (Oct4, Klf4; iPSC(2F-NSC) ), or all four factors (iPSC(4F-NSC) ) with those of embryonic stem cells (ESCs) and iPSC produced from fibroblasts with all four factors (iPSC(4F-MEF) ). After 2 weeks of coculture with PA6 stromal cells, neuronal differentiation of iPSC(1F-NSC) and iPSC(2F-NSC) was less efficient compared with iPSC(4F-NSC) and ESC, yielding lower proportions of colonies that stained positive for early and late neuronal markers. Electrophysiological analyses after 4 weeks of differentiation identified functional maturity in neurons differentiated from ESC, iPSC(2F-NSC) , iPSC(4F-NSC) , and iPSC(4F-MEF) but not in those from iPSC(1F-NSC) . Similar results were obtained after hematoendothelial differentiation on OP9 bone marrow stromal cells, where factor-reduced iPSC generated lower proportions of colonies with hematoendothelial progenitors than colonies of ESC, iPSC(4F-NSC) , and iPSC(4F-MEF) . We conclude that a reduction of reprogramming factors does not only reduce reprogramming efficiency but may also worsen subsequent differentiation and hinder future application of iPSC in cell replacement therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Células-Madre Neurales/fisiología , Animales , Antígenos de Diferenciación/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Factor 4 Similar a Kruppel , Potenciales de la Membrana , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Células-Madre Neurales/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Células del Estroma/metabolismo , Células del Estroma/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Stroke ; 42(6): 1757-63, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21566228

RESUMEN

BACKGROUND AND PURPOSE: Intravenous neural progenitor cell (NPC) treatment was shown to improve functional recovery after experimental stroke. The underlying mechanisms, however, are not completely understood so far. Here, we investigated the effects of systemic NPC transplantation on endogenous neurogenesis and dendritic plasticity of host neurons. METHODS: Twenty-four hours after photothrombotic ischemia, adult rats received either 5 million NPC or placebo intravenously. Behavioral tests were performed weekly up to 4 weeks after ischemia. Endogenous neurogenesis, dendritic length, and dendritic branching of cortical pyramid cells and microglial activation were quantified. RESULTS: NPC treatment led to a significantly improved sensorimotor function measured by the adhesive removal test. The dendritic length and the amount of branch points were significantly increased after NPC transplantation, whereas endogenous neurogenesis was decreased compared to placebo therapy. Decreased endogenous neurogenesis was associated with an increased number of activated microglial cells. CONCLUSIONS: Our findings suggest that an increased dendritic plasticity might be the structural basis of NPC-induced functional recovery. The decreased endogenous neurogenesis after NPC treatment seems to be mediated by microglial activation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neurogénesis/fisiología , Recuperación de la Función/fisiología , Accidente Cerebrovascular/terapia , Animales , Conducta Animal/fisiología , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Fenotipo , Distribución Aleatoria , Ratas , Accidente Cerebrovascular/fisiopatología
12.
Methods Enzymol ; 476: 309-25, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20691874

RESUMEN

Reprogramming of mouse and human somatic cells into induced pluripotent stem (iPS) cells has been possible with retroviral expression of the pluripotency-associated transcription factors Oct4, Sox2, Nanog, and Lin28 as well as Klf4 and c-Myc. iPS cells hold great potential as a model for diseases from the perspective of the individual patient and as an alternative source of pluripotent stem cells for therapeutic applications. In this chapter, we discuss how the use of retroviruses as well as other expression vectors, protein transduction, and small molecules can effectively and efficiently induce pluripotent stem cells from a variety of mouse and human starting somatic cell populations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Transducción Genética , Animales , Línea Celular , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Factor 4 Similar a Kruppel , Lentivirus/genética , Lentivirus/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Retroviridae/genética , Retroviridae/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
13.
Exp Hematol ; 38(9): 809-18, 818.e1-2, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20541586

RESUMEN

OBJECTIVE: Generation of induced pluripotent stem (iPS) cells from human cord blood (CB)-derived unrestricted somatic stem cells and evaluation of their molecular signature and differentiation potential in comparison to human embryonic stem cells. MATERIALS AND METHODS: Unrestricted somatic stem cells isolated from human CB were reprogrammed to iPS cells using retroviral expression of the transcription factors OCT4, SOX2, KLF4, and C-MYC. The reprogrammed cells were analyzed morphologically, by quantitative reverse transcription polymerase chain reaction, genome-wide microRNA and methylation profiling, and gene expression microarrays, as well as in their pluripotency potential by in vivo teratoma formation in severe combined immunodeficient mice and in vitro differentiation. RESULTS: CB iPS cells are very similar to human embryonic stem cells morphologically, at their molecular signature, and in their differentiation potential. CONCLUSIONS: Human CB-derived unrestricted somatic stem cells offer an attractive source of cells for generation of iPS cells. Our findings open novel perspectives to generate human leukocyte antigen-matched pluripotent stem cell banks based on existing CB banks. Besides the obvious relevance of a second-generation CB iPS cell bank for pharmacological and toxicological testing, its application for autologous or allogenic regenerative cell transplantation appears feasible.


Asunto(s)
Desdiferenciación Celular , Sangre Fetal/citología , Sangre Fetal/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Metilación de ADN/genética , Estudio de Asociación del Genoma Completo , Humanos , Factor 4 Similar a Kruppel , Ratones , Ratones SCID , MicroARNs/biosíntesis , MicroARNs/genética , Trasplante de Células Madre , Teratoma/metabolismo , Teratoma/patología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Trasplante Autólogo , Trasplante Heterólogo , Trasplante Homólogo
14.
Nat Protoc ; 4(10): 1464-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19798081

RESUMEN

The generation of induced pluripotent stem (iPS) cells from mouse and human somatic cells by expression of defined transcription factors (Oct4, Sox2, c-Myc, Klf4, Nanog and Lin28) is a powerful tool for conducting basic research and investigating the potential of these cells for replacement therapies. In our laboratory, iPS cells have been generated from adult mouse neural stem cells (NSCs) by ectopic expression of either Oct4 alone (one factor; 1F) or Oct4 plus Klf4 (two factors; 2F). Successful reprogramming of mouse NSCs by 1F or 2F depends on endogenous expression of Sox2, Klf4 and c-Myc. Direct reprogramming of somatic stem cells to 1F or 2F iPS cells avoids expression of the oncogenes Klf4 and c-Myc and, hence, the development of tumors in chimeras and offspring derived from these cells. Here we present a detailed protocol for the derivation of NSCs from adult mouse brain (which takes 4 weeks), and generation of 1F (4-5 weeks) or 2F iPS cells (2-3 weeks) from adult mouse NSCs.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre/citología , Animales , Factor 4 Similar a Kruppel , Ratones , Retroviridae , Transducción Genética , Transfección
15.
Cell ; 136(3): 411-9, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19203577

RESUMEN

The four transcription factors Oct4, Sox2, Klf4, and c-Myc can induce pluripotency in mouse and human fibroblasts. We previously described direct reprogramming of adult mouse neural stem cells (NSCs) by Oct4 and either Klf4 or c-Myc. NSCs endogenously express Sox2, c-Myc, and Klf4 as well as several intermediate reprogramming markers. Here we report that exogenous expression of the germline-specific transcription factor Oct4 is sufficient to generate pluripotent stem cells from adult mouse NSCs. These one-factor induced pluripotent stem cells (1F iPS) are similar to embryonic stem cells in vitro and in vivo. Not only can these cells can be efficiently differentiated into NSCs, cardiomyocytes, and germ cells in vitro, but they are also capable of teratoma formation and germline transmission in vivo. Our results demonstrate that Oct4 is required and sufficient to directly reprogram NSCs to pluripotency.


Asunto(s)
Células Madre Adultas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Reprogramación Celular , Células Madre Embrionarias/metabolismo , Células Germinativas/citología , Factor 4 Similar a Kruppel , Antígeno Lewis X/metabolismo , Ratones , Miocitos Cardíacos/citología
16.
Nature ; 454(7204): 646-50, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18594515

RESUMEN

Reprogramming of somatic cells is a valuable tool to understand the mechanisms of regaining pluripotency and further opens up the possibility of generating patient-specific pluripotent stem cells. Reprogramming of mouse and human somatic cells into pluripotent stem cells, designated as induced pluripotent stem (iPS) cells, has been possible with the expression of the transcription factor quartet Oct4 (also known as Pou5f1), Sox2, c-Myc and Klf4 (refs 1-11). Considering that ectopic expression of c-Myc causes tumorigenicity in offspring and that retroviruses themselves can cause insertional mutagenesis, the generation of iPS cells with a minimal number of factors may hasten the clinical application of this approach. Here we show that adult mouse neural stem cells express higher endogenous levels of Sox2 and c-Myc than embryonic stem cells, and that exogenous Oct4 together with either Klf4 or c-Myc is sufficient to generate iPS cells from neural stem cells. These two-factor iPS cells are similar to embryonic stem cells at the molecular level, contribute to development of the germ line, and form chimaeras. We propose that, in inducing pluripotency, the number of reprogramming factors can be reduced when using somatic cells that endogenously express appropriate levels of complementing factors.


Asunto(s)
Células Madre Adultas/citología , Reprogramación Celular , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Adultas/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Quimera , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Perfilación de la Expresión Génica , Genes myc/genética , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Ratones Desnudos , Ratones Transgénicos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN no Traducido , Factores de Transcripción SOXB1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética
17.
Mol Cell Proteomics ; 7(4): 672-83, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18045802

RESUMEN

Embryonic stem (ES) cells are pluripotent cells isolated from mammalian preimplantation embryos. They are capable of differentiating into all cell types and therefore hold great promise in regenerative medicine. Here we show that murine ES cells can be fully SILAC (stable isotope labeling by amino acids in cell culture)-labeled when grown feeder-free during the last phase of cell culture. We fractionated the SILAC-labeled ES cell proteome by one-dimensional gel electrophoresis and by isoelectric focusing of peptides. High resolution analysis on a linear ion trap-orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 5,000 distinct proteins. This is the largest quantified proteome reported to date and contains prominent stem cell markers such as OCT4, NANOG, SOX2, and UTF1 along with the embryonic form of RAS (ERAS). We also quantified the proportion of the ES cell proteome present in cytosolic, nucleoplasmic, and membrane/chromatin fractions. We compared two different preparation approaches, cell fractionation followed by one-dimensional gel separation and in-solution digestion of total cell lysate combined with isoelectric focusing, and found comparable proteome coverage with no apparent bias for any functional protein classes for either approach. Bioinformatics analysis of the ES cell proteome revealed a broad distribution of cellular functions with overrepresentation of proteins involved in proliferation. We compared the proteome with a recently published map of chromatin states of promoters in ES cells and found excellent correlation between protein expression and the presence of active and repressive chromatin marks.


Asunto(s)
Aminoácidos/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/química , Marcaje Isotópico/métodos , Proteoma/análisis , Proteómica/métodos , Animales , Fraccionamiento Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Focalización Isoeléctrica , Ratones , Péptidos/análisis , Proteoma/genética , Proteoma/metabolismo , ARN Mensajero/análisis , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA