Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Exp Mol Med ; 56(3): 721-733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38528124

RESUMEN

Acetyl-CoA synthetase 2 (ACSS2)-dependent acetate usage has generally been associated with tumorigenesis and increased malignancy in cancers under nutrient-depleted conditions. However, the nutrient usage and metabolic characteristics of the liver differ from those of other organs; therefore, the mechanism of ACSS2-mediated acetate metabolism may also differ in liver cancer. To elucidate the underlying mechanisms of ACSS2 in liver cancer and acetate metabolism, the relationships between patient acetate uptake and metabolic characteristics and between ACSS2 and tumor malignancies were comprehensively studied in vitro, in vivo and in humans. Clinically, we initially found that ACSS2 expression was decreased in liver cancer patients. Moreover, PET-CT imaging confirmed that lower-grade cancer cells take up more 11C-acetate but less 18F-fluorodeoxyglucose (18F-FDG); however, this trend was reversed in higher-grade cancer. Among liver cancer cells, those with high ACSS2 expression avidly absorbed acetate even in a glucose-sufficient environment, whereas those with low ACSS2 expression did not, thereby showing correlations with their respective ACSS2 expression. Metabolomic isotope tracing in vitro and in vivo revealed greater acetate incorporation, greater lipid anabolic metabolism, and less malignancy in high-ACSS2 tumors. Notably, ACSS2 downregulation in liver cancer cells was associated with increased tumor occurrence in vivo. In human patient cohorts, patients in the low-ACSS2 subgroup exhibited reduced anabolism, increased glycolysis/hypoxia, and poorer prognosis. We demonstrated that acetate uptake by ACSS2 in liver cancer is independent of glucose depletion and contributes to lipid anabolic metabolism and reduced malignancy, thereby leading to a better prognosis for liver cancer patients.


Asunto(s)
Glucosa , Neoplasias Hepáticas , Humanos , Acetilcoenzima A/metabolismo , Glucosa/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Línea Celular Tumoral , Acetatos , Ligasas
2.
Exp Mol Med ; 55(10): 2238-2247, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37779146

RESUMEN

Histone acetylation involves the transfer of two-carbon units to the nucleus that are embedded in low-concentration metabolites. We found that lactate, a high-concentration metabolic byproduct, can be a major carbon source for histone acetylation through oxidation-dependent metabolism. Both in cells and in purified nuclei, 13C3-lactate carbons are incorporated into histone H4 (maximum incorporation: ~60%). In the purified nucleus, this process depends on nucleus-localized lactate dehydrogenase (LDHA), knockout (KO) of which abrogates incorporation. Heterologous expression of nucleus-localized LDHA reverses the KO effect. Lactate itself increases histone acetylation, whereas inhibition of LDHA reduces acetylation. In vitro and in vivo settings exhibit different lactate incorporation patterns, suggesting an influence on the microenvironment. Higher nuclear LDHA localization is observed in pancreatic cancer than in normal tissues, showing disease relevance. Overall, lactate and nuclear LDHA can be major structural and regulatory players in the metabolism-epigenetics axis controlled by the cell's own status or the environmental status.


Asunto(s)
Histonas , Ácido Láctico , Histonas/metabolismo , Ácido Láctico/metabolismo , Acetilación , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Epigénesis Genética
3.
Blood Adv ; 7(13): 3155-3168, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-36809797

RESUMEN

Acute myeloid leukemia (AML) generally has an unsatisfactory prognosis despite the recent introduction of new regimens, including targeted agents and antibodies. To find a new druggable pathway, we performed integrated bioinformatic pathway screening on large OHSU and MILE AML databases, discovered the SUMOylation pathway, and validated it independently with an external data set (totaling 2959 AML and 642 normal sample data). The clinical relevance of SUMOylation in AML was supported by its core gene expression which is correlated with patient survival, European LeukemiaNet 2017 risk classification, and AML-relevant mutations. TAK-981, a first-in-class SUMOylation inhibitor currently under clinical trials for solid tumors, showed antileukemic effects with apoptosis induction, cell-cycle arrest, and induction of differentiation marker expression in leukemic cells. It exhibited potent nanomolar activity, often stronger than that of cytarabine, which is part of the standard of care. TAK-981's utility was further demonstrated in in vivo mouse and human leukemia models as well as patient-derived primary AML cells. Our results also indicate direct and cancer cell-inherent anti-AML effects by TAK-981, different from the type 1 interferon and immune-dependent mechanism in a previous solid tumor study. Overall, we provide a proof-of-concept for SUMOylation as a new targetable pathway in AML and propose TAK-981 as a promising direct anti-AML agent. Our data should prompt studies on optimal combination strategies and transitions to clinical trials in AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Animales , Ratones , Humanos , Apoptosis , Sumoilación , Proliferación Celular , Antineoplásicos/uso terapéutico , Leucemia Mieloide Aguda/genética
4.
J Exp Clin Cancer Res ; 42(1): 42, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750850

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), with its hallmark phenotype of high cytosolic lipid content, is considered a metabolic cancer. Despite the implication of this lipid-rich phenotype in ccRCC tumorigenesis, the roles and regulators of de novo lipid synthesis (DNL) in ccRCC remain largely unexplained. METHODS: Our bioinformatic screening focused on ccRCC-lipid phenotypes identified glutathione peroxidase 8 (GPX8), as a clinically relevant upstream regulator of DNL. GPX8 genetic silencing was performed with CRISPR-Cas9 or shRNA in ccRCC cell lines to dissect its roles. Untargeted metabolomics, RNA-seq analyses, and other biochemical assays (e.g., lipid droplets staining, fatty acid uptake, cell proliferation, xenograft, etc.) were carried out to investigate the GPX8's involvement in lipid metabolism and tumorigenesis in ccRCC. The lipid metabolic function of GPX8 and its downstream were also measured by isotope-tracing-based DNL flux measurement. RESULTS: GPX8 knockout or downregulation substantially reduced lipid droplet levels (independent of lipid uptake), fatty acid de novo synthesis, triglyceride esterification in vitro, and tumor growth in vivo. The downstream regulator was identified as nicotinamide N-methyltransferase (NNMT): its knockdown phenocopied, and its expression rescued, GPX8 silencing both in vitro and in vivo. Mechanically, GPX8 regulated NNMT via IL6-STAT3 signaling, and blocking this axis suppressed ccRCC survival by activating AMPK. Notably, neither the GPX8-NNMT axis nor the DNL flux was affected by the von Hippel Lindau (VHL) status, the conventional regulator of ccRCC high lipid content. CONCLUSIONS: Taken together, our findings unravel the roles of the VHL-independent GPX8-NNMT axis in ccRCC lipid metabolism as related to the phenotypes and growth of ccRCC, which may be targeted for therapeutic purposes.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Lipogénesis , Transformación Celular Neoplásica/genética , Carcinogénesis/genética , Carcinoma/genética , Neoplasias Renales/patología , Lípidos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo
5.
J Biomed Sci ; 30(1): 2, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611161

RESUMEN

BACKGROUND: Heat shock protein 27 (HSP27) is overexpressed during pulmonary fibrosis (PF) and exacerbates PF; however, the upregulation of HSP27 during PF and the therapeutic strategy of HSP27 inhibition is not well elucidated. METHODS: We have developed a mouse model simulating clinical stereotactic body radiotherapy (SBRT) with focal irradiation and validated the induction of RIPF. HSP25 (murine form of HSP27) transgenic (TG) and LLC1-derived orthotropic lung tumor models were also used. Lung tissues of patients with RIPF and idiopathic pulmonary fibrosis, and lung tissues from various fibrotic mouse models, as well as appropriated cell line systems were used. Public available gene expression datasets were used for therapeutic response rate analysis. A synthetic small molecule HSP27 inhibitor, J2 was also used. RESULTS: HSP27 expression with its phosphorylated form (pHSP27) increased during PF. Decreased mRNA expression of SMAD-specific E3 ubiquitin-protein ligase 2 (Smurf2), which is involved in ubiquitin degradation of HSP27, was responsible for the increased expression of pHSP27. In addition, increased expression of miRNA15b was identified with decreased expression of Smurf2 mRNA in PF models. Inverse correlation between pHSP27 and Smurf2 was observed in the lung tissues of PF animals, an irradiated orthotropic lung cancer models, and PF tissues from patients. Moreover, a HSP27 inhibitor cross-linked with HSP27 protein to ameliorate PF, which was more effective when targeting the epithelial to mesenchymal transition (EMT) stage of PF. CONCLUSIONS: Our findings identify upregulation mechanisms of HSP27 during PF and provide a therapeutic strategy for HSP27 inhibition for overcoming PF.


Asunto(s)
MicroARNs , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacología , Transición Epitelial-Mesenquimal , Ubiquitina-Proteína Ligasas/genética , MicroARNs/metabolismo , ARN Mensajero
6.
Theranostics ; 13(2): 438-457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632231

RESUMEN

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Asunto(s)
Glicerolfosfato Deshidrogenasa , Mitocondrias , Neoplasias , Proteínas Proto-Oncogénicas c-akt , Metabolismo Energético , Éteres/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Ratones , Neoplasias/enzimología , Neoplasias/patología , Humanos
7.
Anal Chem ; 95(2): 1184-1192, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36602057

RESUMEN

Early diagnosis of hepatocellular carcinoma (HCC) is difficult; the lack of convenient biomarker-based diagnostic modalities renders high-risk HCC patients burdened by life-long periodical examinations. Here, a new chemical biopsy approach was developed for noninvasive diagnosis of HCC using urine samples. Bioinformatic screening for tumor suppressors yielded glycine N-methyltransferase (GNMT) as a biomarker with clinical relevance to HCC tumorigenesis. A liquid chromatography-mass spectrometry (LC-MS)-based chemical biopsy detecting nonradioactive 13C-sarcosine from 13C-glycine was designed to noninvasively assess liver GNMT activity extrahepatically. 13C-Sarcosine showed a strong correlation with GNMT in normal and cancerous liver cells. In an autochthonous animal model developing visible cancer nodules at 17 weeks, the urinary 13C-sarcosine chemical biopsy exhibited notable changes as early as 8 weeks, showing significant correlations with liver GNMT and molecular pathological changes. Our chemical biopsy approach should facilitate early and noninvasive diagnosis of HCC, with direct relevance to tumorigenesis, which can be straightforwardly applied to other diseases.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/patología , Glicina N-Metiltransferasa , Sarcosina , Hígado/patología , Transformación Celular Neoplásica/patología , Carcinogénesis/patología
8.
Biochem Biophys Res Commun ; 601: 38-44, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35228119

RESUMEN

Lung inflammation and fibrosis are common side effects of radiotherapy that can lead to serious reduction in the quality of life of patients. However, no effective treatment is available, and the mechanisms underlying its pathophysiology are poorly understood. Irradiation increases formyl peptide receptor 2 (FPR2) expression in lung tissue, and FPR2 agonists are known to promote the uptake of apoptosis cells, referred to as efferocytosis that is a hallmark of the resolution of inflammation. Herein, in a mouse model of radiation-induced lung injury (RILI), efferocytosis was induced by injecting apoptotic cells into the lung through the trachea, and its correlation with FPR expression and the effect of efferocytosis and FPR expression on RILI were assessed. Interestingly, when apoptotic cells were injected into the lung, the radiation-induced increase in FPR2 expression was further amplified. In the mouse model of RILI, apoptotic cell instillation reduced the volume of the damaged lung and prevented the decrease in lung function. Additionally, the expression of inflammatory cytokines, fibrosis-related markers, and oxidative stress-related markers was reduced by apoptotic cell instillation. Co-administration of apoptotic Jurkat cells and WRW4, the FPR2 antagonist, reversed these effects. These findings suggest that efferocytosis induced by apoptotic cell instillation and enhanced FPR2 expression attenuate RILI, thereby alleviating lung inflammation and fibrosis.


Asunto(s)
Pulmón , Neumonía , Traumatismos por Radiación , Animales , Apoptosis/efectos de la radiación , Fibrosis , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Ratones , Fagocitosis , Neumonía/inducido químicamente , Calidad de Vida , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Receptores de Formil Péptido/metabolismo , Receptores de Lipoxina/metabolismo
9.
Korean J Gastroenterol ; 78(5): 300-304, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824189

RESUMEN

Neuroendocrine tumors (NETs) can arise throughout the body. Most NETs in the liver are metastatic tumors; primary hepatic NET (PHNET) is extremely rare. A diagnosis of PHNET is very difficult. No single modality can diagnose PHNET by itself, and it often resembles other hypervascular masses of the liver. This paper reports the case of a 51-year old female with a large hepatic mass. Unlike most of PHNETs reported previously, it was composed of a solid mass with mainly multiple cystic lesions, which led to an erroneous diagnosis of hepatic mucinous cystadenoma or cystadenocarcinoma. PHNET with cystic lesions is extremely rare, and the features are not well studied. This case may help physicians suspect PHNET in a differential diagnosis of an atypical hepatic mass.


Asunto(s)
Tumor Carcinoide , Neoplasias Intestinales , Neoplasias Hepáticas , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico , Persona de Mediana Edad , Tumores Neuroendocrinos/diagnóstico
10.
Sci Rep ; 10(1): 16112, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999298

RESUMEN

Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient's quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.


Asunto(s)
NADPH Oxidasa 4/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Ratones , Calidad de Vida , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Neumonitis por Radiación/tratamiento farmacológico , Neumonitis por Radiación/metabolismo
11.
Cell Death Dis ; 11(8): 653, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32811815

RESUMEN

Radiation therapy is an important modality in the treatment of lung cancer, but it can lead to radiation pneumonitis, and eventually radiation fibrosis. To date, only few available drugs can effectively manage radiation-induced pulmonary fibrosis. Lipoxins are endogenous molecules exhibit anti-inflammatory and pro-resolving effects. These molecules play a vital role in reducing excessive tissue injury and chronic inflammation; however, their effects on radiation-induced lung injury (RILI) are unknown. In this study, we investigated the effects of lipoxin A4 (LXA4) on RILI using our specialized small-animal model of RILI following focal-ablative lung irradiation (IR). LXA4 significantly inhibited immune-cell recruitment and reduced IR-induced expression of pro-inflammatory cytokines and fibrotic proteins in the lung lesion sites. In addition, micro-CT revealed that LXA4 reduced IR-induced increases in lung consolidation volume. The flexiVentTM assays showed that LXA4 significantly reversed IR-induced lung function damage. Moreover, LXA4 downregulated the activities of NF-κB and the Smad-binding element promoters. The expression of FPR2, an LXA4 receptor, increased during the development of IR-induced pulmonary fibrosis, whereas silencing of endogenous LXA4 using an antagonist (WRW4) or FPR2 siRNA resulted in impaired development of pulmonary fibrosis in response to IR. Collectively, these data suggest that LXA4 could serve as a potent therapeutic agent for alleviating RILI.


Asunto(s)
Lipoxinas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores de Formil Péptido/metabolismo , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Fibrosis/metabolismo , Humanos , Lipoxinas/fisiología , Pulmón/citología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/fisiopatología , Radiación , Radioterapia/efectos adversos , Receptor Cross-Talk/fisiología , Receptores de Formil Péptido/fisiología , Receptores de Lipoxina/metabolismo , Receptores de Lipoxina/fisiología , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
12.
J Mol Med (Berl) ; 97(1): 37-47, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30406363

RESUMEN

In radiotherapy, radiation (IR)-induced lung fibrosis has severe and dose-limiting side effects. To elucidate the molecular effects of IR fibrosis, we examined the fibrosis process in irradiated mouse lung tissues. High focal IR (90 Gy) was exposed to a 3-mm volume of the left lung in C57BL6 mice. In the diffused irradiation, 20 Gy dose delivered with a 7-mm collimator almost covered the entire left lung. Histological examination for lung tissues of both irradiated and neighboring regions was done for 4 weeks after irradiation. Long-term effects (12 months) of 20Gy IR were compared on a diffuse region of the left lung and non-irradiated right lung. Fibrosis was initiated as early as 2 weeks after IR in the irradiated lung region and neighboring region. Upregulation of gtse1 in both 90Gy-irradiated and neighboring regions was observed. Upregulation of fgl1 in both 20Gy diffused irradiated and non-irradiated lungs was identified. When gtse1 or flg1 was knock-downed, TGFß or IR-induced epithelial-mesenchymal transition was inhibited, accompanied with the inhibition of cellular migration, suggesting fibrosis responsible genes. Immunofluorescence analysis using mouse fibrotic lung tissues suggested that fibrotic regions showed increased expressions of Gtse1 and Fgl1, indicating novel molecular signatures of gtse1and fgl1 for IR-induced lung fibrosis. Even though their molecular mechanisms and IR doses or irradiated volumes for lung fibrosis may be different, these genes may be novel targets for understanding IR-induced lung fibrosis and in treatment strategies. KEY MESSAGES: Upregulation of gtse1 by 90Gy focal irradiation and upregulation of fgl1 by 20Gy diffused irradiation are identified in mouse lung fibrosis model. Gtse1 and Fgl1 are involved in radiation or TGFß-induced epithelial-mesenchymal transition. Radiation-induced fibrotic regions of mouse lungs showed increased expressions of Gtse1 and Fgl1. Gtse1 and Fgl1 are suggested to be novel targets for radiation-induced lung fibrosis.


Asunto(s)
Fibrinógeno/genética , Proteínas Asociadas a Microtúbulos/genética , Fibrosis Pulmonar/genética , Neumonitis por Radiación/genética , Células A549 , Animales , Línea Celular , Transición Epitelial-Mesenquimal/efectos de la radiación , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Masculino , Ratones Endogámicos C57BL , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Neumonitis por Radiación/etiología , Neumonitis por Radiación/patología , Radioterapia/efectos adversos , Transcriptoma/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
13.
Nat Commun ; 9(1): 5108, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504836

RESUMEN

It remains controversial whether targeting tumour vasculature can improve radiotherapeutic efficacy. We report that radiation-induced endothelial-to-mesenchymal transition (EndMT) leads to tumour vasculature with abnormal SMA+NG2+ pericyte recruitment during tumour regrowth after radiotherapy. Trp53 (but not Tgfbr2) deletion in endothelial cells (ECs) inhibited radiation-induced EndMT, reducing tumour regrowth and metastases with a high CD44v6+ cancer-stem-cell (CSC) content after radiotherapy. Osteopontin, an EndMT-related angiocrine factor suppressed by EC-Trp53 deletion, stimulated proliferation in dormant CD44v6+ cells in severely hypoxic regions after radiation. Radiation-induced EndMT significantly regulated tumour-associated macrophage (TAM) polarization. CXCR4 upregulation in radioresistant tumour ECs was highly associated with SDF-1+ TAM recruitment and M2 polarization of TAMs, which was suppressed by Trp53 deletion. These EndMT-related phenomena were also observed in irradiated human lung cancer tissues. Our findings suggest that targeting tumour EndMT might enhance radiotherapy efficacy by inhibiting the re-activation of dormant hypoxic CSCs and promoting anti-tumour immune responses.


Asunto(s)
Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Receptores de Hialuranos/metabolismo , Macrófagos/metabolismo , Animales , Bencilaminas , Línea Celular Tumoral , Transdiferenciación Celular/efectos de los fármacos , Transdiferenciación Celular/genética , Ciclamas , Transición Epitelial-Mesenquimal/genética , Femenino , Compuestos Heterocíclicos/farmacología , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
14.
Cell Physiol Biochem ; 48(3): 959-970, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30036874

RESUMEN

BACKGROUND/AIMS: Radiation-induced skin fibrosis is a common side effect of clinical radiotherapy. Our previous next-generation sequencing (NGS) study demonstrated the reduced expression of the regulatory α subunit of phosphatidylinositol 3-kinase (PIK3r1) in irradiated murine skin. Metformin has been reported to target the PIK3-FOXO3 pathway. In this study, we investigated the effects of metformin on radiation-induced skin fibrosis. METHODS: Metformin was orally administered to irradiated mice. Skin fibrosis was analyzed by staining with H&E and Masson's trichrome stain. The levels of cytokines and chemokines associated with fibrosis were analyzed by immunohistochemistry and quantitative RT-PCR. The roles of PIK3rl and FOXO3 in radiation-induced skin fibrosis were studied by overexpressing PIK3rl and transfecting FOXO3 siRNA in NIH3T3 cells and mouse-derived dermal fibroblasts (MDF). RESULTS: The oral administration of metformin significantly reduced radiation-induced skin thickening and collagen accumulation and significantly reduced the radiation-induced expression of FOXO3 in murine skin. Additionally, the overexpression of PIK3r1 reduced the radiation-induced expression of FOXO3, while FOXO3 silencing decreased the radiation-induced expression of TGFß in vitro. CONCLUSIONS: The results indicated that metformin suppresses radiation-induced skin injuries by modulating the expression of FOXO3 through PIK3r1. Collectively, the data obtained in this study suggested that metformin could be a potent therapeutic agent for alleviating radiation-induced skin fibrosis.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Metformina/farmacología , Animales , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Regulación hacia Abajo/efectos de la radiación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Proteína Forkhead Box O3/antagonistas & inhibidores , Proteína Forkhead Box O3/genética , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/prevención & control , Radiación Ionizante , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Piel/efectos de los fármacos , Piel/patología , Piel/efectos de la radiación , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
Sci Rep ; 8(1): 4189, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29520071

RESUMEN

Radiation therapy has been used to treat over 70% of thoracic cancer; however, the method usually causes radiation pneumonitis. In the current study, we investigated the radioprotective effects of HSP27 inhibitor (J2) on radiation-induced lung inflammation in comparison to amifostine. In gross and histological findings, J2 treatment significantly inhibited immune cell infiltration in lung tissue, revealing anti-inflammatory potential of J2. Normal lung volume, evaluated by micro-CT analysis, in J2-treated mice was higher compared to that in irradiated mice. J2-treated mice reversed radiation-induced respiratory distress. However, amifostine did not show significant radioprotective effects in comparison to that of J2. In HSP27 transgenic mice, we observed increased immune cells recruitment and decreased volume of normal lung compared to wild type mice. Increased ROS production and oxidative stress after IR were down-regulated by J2 treatment, demonstrating antioxidant property of J2. The entire data of this study collectively showed that J2 may be an effective therapeutic agent for radiation-induced lung injury.


Asunto(s)
Proteínas de Choque Térmico HSP27/antagonistas & inhibidores , Neumonía/tratamiento farmacológico , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Protectores contra Radiación/farmacología , Animales , Proteínas de Choque Térmico HSP27/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Neumonía/genética , Neumonía/metabolismo , Neumonía/patología , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Especies Reactivas de Oxígeno/metabolismo
16.
Sci Rep ; 7: 45001, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28322297

RESUMEN

Radiation therapy is widely used for thoracic cancers. However, it occasionally causes radiation-induced lung injuries, including pneumonitis and fibrosis. Chung-Sang-Bo-Ha-Tang (CSBHT) has been traditionally used to treat chronic pulmonary disease in Korea. PM014, a modified herbal formula derived from CSBHT, contains medicinal herbs of seven species. In our previous studies, PM014 exhibited anti-inflammatory effects in a chronic obstructive pulmonary disease model. In this study, we have evaluated the effects of PM014 on radiation-induced lung inflammation. Mice in the treatment group were orally administered PM014 six times for 2 weeks. Effects of PM014 on radiation pneumonitis were evaluated based on histological findings and differential cell count in bronchoalveolar lavage fluid. PM014 treatment significantly inhibited immune cell recruitment and collagen deposition in lung tissue. Normal lung volume, evaluated by radiological analysis, in PM014-treated mice was higher compared to that in irradiated control mice. PM014-treated mice exhibited significant changes in inspiratory capacity, compliance and tissue damping and elastance. Additionally, PM014 treatment resulted in the downregulation of inflammatory cytokines, chemokines, and fibrosis-related genes and a reduction in the transforming growth factor-ß1-positive cell population in lung tissue. Thus, PM014 is a potent therapeutic agent for radiation-induced lung fibrosis and inflammation.


Asunto(s)
Extractos Vegetales/farmacología , Neumonitis por Radiación/patología , Animales , Biopsia , Modelos Animales de Enfermedad , Femenino , Inmunohistoquímica , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de la radiación , Ratones , Neumonitis por Radiación/diagnóstico por imagen , Neumonitis por Radiación/tratamiento farmacológico , Neumonitis por Radiación/genética , Microtomografía por Rayos X
17.
J Cell Mol Med ; 21(4): 711-719, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27862899

RESUMEN

Although lung injury including fibrosis is a well-documented side effect of lung irradiation, the mechanisms underlying its pathology are poorly understood. X-rays are known to cause apoptosis in the alveolar epithelial cells of irradiated lungs, which results in fibrosis due to the proliferation and differentiation of fibroblasts and the deposition of collagen. Apoptosis and BH3-only pro-apoptotic proteins have been implicated in the pathogenesis of pulmonary fibrosis. Recently, we have established a clinically analogous experimental model that reflects focal high-dose irradiation of the ipsilateral lung. The goal of this study was to elucidate the mechanism underlying radiation-induced lung injury based on this model. A radiation dose of 90 Gy was focally delivered to the left lung of C57BL/6 mice for 14 days. About 9 days after irradiation, the mice began to show increased levels of the pro-apoptotic protein Noxa in the irradiated lung alongside increased apoptosis and fibrosis. Suppression of Noxa expression by small interfering RNA protected cells from radiation-induced cell death and decreased expression of fibrogenic markers. Furthermore, we showed that reactive oxygen species participate in Noxa-mediated, radiation-induced cell death. Taken together, our results show that Noxa is involved in X-ray-induced lung injury.


Asunto(s)
Apoptosis , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Traumatismos por Radiación/complicaciones , Traumatismos por Radiación/metabolismo , Animales , Apoptosis/efectos de la radiación , Biomarcadores/metabolismo , Línea Celular , Relación Dosis-Respuesta en la Radiación , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Pulmón/patología , Pulmón/efectos de la radiación , Lesión Pulmonar/patología , Ratones , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Traumatismos por Radiación/patología , Especies Reactivas de Oxígeno/metabolismo , Rayos X
18.
Neurobiol Dis ; 83: 90-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342897

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Although the etiology of PD has not yet been fully understood, accumulating evidence indicates that neuroinflammation plays a critical role in the progression of PD. α-Synuclein (α-Syn) has been considered to be a key player of the pathogenesis of PD, and recent reports that prion-like propagation of misfolded α-syn released from neurons may play an important role in the progression of PD have led to increased attention to the studies elucidating the roles of extracellular α-syn in the CNS. Extracellular α-syn has also been reported to regulate microglial inflammatory response. In this study, we demonstrated that aggregated α-syn inhibited microglial phagocytosis by activating SHP-1. SHP-1 activation was also observed in A53T α-syn transgenic mice. In addition, aggregated α-syn bound to FcγRIIB on microglia, inducing SHP-1 activation, further inhibiting microglial phagocytosis. Aggregated α-syn upregulated FcγRIIB expression in microglia and upregulated FcγRIIB was also observed in A53T α-syn transgenic mice. These data suggest that aggregated α-syn released from neurons dysregulates microglial immune response through inhibiting microglial phagocytosis, further causing neurodegeneration observed in PD. The interaction of aggregated α-syn and FcγRIIB and further SHP-1 activation can be a new therapeutic target against PD.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Microglía/fisiología , Fagocitosis , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de IgG/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agregado de Proteínas/fisiología , Ratas , Ratas Sprague-Dawley
19.
Neural Regen Res ; 8(13): 1190-200, 2013 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25206413

RESUMEN

Transplantation of neural stem cells has been reported as a possible approach for replacing impaired dopaminergic neurons. In this study, we tested the efficacy of early-stage human dental papilla-derived stem cells and human brain-derived neural stem cells in rat models of 6-hydroxydopamine-induced Parkinson's disease. Rats received a unilateral injection of 6-hydroxydopamine into right medial forebrain bundle, followed 3 weeks later by injections of PBS, early-stage human dental papilla-derived stem cells, or human brain-derived neural stem cells into the ipsilateral striatum. All of the rats in the human dental papilla-derived stem cell group died from tumor formation at around 2 weeks following cell transplantation. Postmortem examinations revealed homogeneous malignant tumors in the striatum of the human dental papilla-derived stem cell group. Stepping tests revealed that human brain-derived neural stem cell transplantation did not improve motor dysfunction. In apomorphine-induced rotation tests, neither the human brain-derived neural stem cell group nor the control groups (PBS injection) demonstrated significant changes. Glucose metabolism in the lesioned side of striatum was reduced by human brain-derived neural stem cell transplantation. [(18)F]-FP-CIT PET scans in the striatum did not demonstrate a significant increase in the human brain-derived neural stem cell group. Tyrosine hydroxylase (dopaminergic neuronal marker) staining and G protein-activated inward rectifier potassium channel 2 (A9 dopaminergic neuronal marker) were positive in the lesioned side of striatum in the human brain-derived neural stem cell group. The use of early-stage human dental papilla-derived stem cells confirmed its tendency to form tumors. Human brain-derived neural stem cells could be partially differentiated into dopaminergic neurons, but they did not secrete dopamine.

20.
Korean J Anesthesiol ; 63(3): 260-2, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23060984

RESUMEN

Hydroxyethyl starch (HES) solutions are synthetic non-protein colloid solutions used to treat hypovolemia. However, their use is not free from the risk of allergic reactions. A 42-year-old male was scheduled to undergo aortic-iliac-femoral bypass surgery for the treatment of arteriosclerosis obliterans. He had no history of allergy. Two hours after the start of surgery, and within minutes after HES administration, facial erythema, hypotension and bronchospasm developed. HES infusion was discontinued under the estimation of anaphylaxis. The patient received phenylephrine, ephedrine, diphenhydramine and hydrocortisone with hydration. After restoration of vital signs, surgery was performed without complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA