Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Elife ; 132024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526535

RESUMEN

Axon guidance molecules are critical for neuronal pathfinding because they regulate directionality and growth pace during nervous system development. However, the molecular mechanisms coordinating proper axonal extension and turning are poorly understood. Here, metastasis suppressor 1 (Mtss1), a membrane protrusion protein, ensured axonal extension while sensitizing axons to the Semaphorin 3E (Sema3E)-Plexin-D1 repulsive cue. Sema3E-Plexin-D1 signaling enhanced Mtss1 expression in projecting striatonigral neurons. Mtss1 localized to the neurite axonal side and regulated neurite outgrowth in cultured neurons. Mtss1 also aided Plexin-D1 trafficking to the growth cone, where it signaled a repulsive cue to Sema3E. Mtss1 ablation reduced neurite extension and growth cone collapse in cultured neurons. Mtss1-knockout mice exhibited fewer striatonigral projections and irregular axonal routes, and these defects were recapitulated in Plxnd1- or Sema3e-knockout mice. These findings demonstrate that repulsive axon guidance activates an exquisite autoregulatory program coordinating both axonal extension and steering during neuronal pathfinding.


Asunto(s)
Moléculas de Adhesión Celular , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Semaforinas , Animales , Ratones , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Semaforinas/genética , Semaforinas/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119659, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216089

RESUMEN

The effects of EGCG on the selective death of cancer cells by modulating antioxidant pathways through autophagy were explored in various normal and cancer cells. EGCG positively regulated the p62-KEAP1-NRF2-HO-1 pathway in normal cells, while negatively regulating it in cancer cells, leading to selective apoptotic death of cancer cells. In EGCG-treated MRC5 cells (EGCG-MRC5), autophagic flux was blocked, which was accompanied by the formation of p62-positive aggregates. However, EGCG-treated HeLa cells (EGCG-HeLa) showed incomplete autophagic flux and no aggregate formation. The levels of P-ULK1 S556 and S758 increased in EGCG-MRC5 through AMPK-mTOR cooperative interaction. In contrast, EGCG treatment in HeLa cells led to AMPK-induced mTOR inactivation, resulting in abrogation of P-ULK1 S556 and S758 levels. AMPK knockout in EGCG-HeLa restored positive regulation of the p62-mediated pathway, which was accompanied by increased P-mTOR S2448 and P-ULK1 S758 levels. Knockdown of 67LR in EGCG-HeLa abolished AMPK activity but did not restore the p62-mediated pathway. Surprisingly, both AMPK knockout and 67LR knockdown in EGCG-HeLa markedly increased cell viability, despite differential regulation of the antioxidant enzyme HO-1. In conclusion, EGCG induces the selective death of cancer cells through the modulation of at least two autophagy-dependent and independent regulatory pathways: negative regulation involves the mTOR-ULK1 (S556 and S758)-p62-KEAP1-NRF2-HO-1 axis via AMPK activation, whereas positive regulation occurs through the 67LR-AMPK axis.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Quinasas Activadas por AMP/genética , Células HeLa , Factor 2 Relacionado con NF-E2/genética , Autofagia , Serina-Treonina Quinasas TOR/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Biology (Basel) ; 12(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132359

RESUMEN

Although ionizing radiation (IR) is widely used for therapeutic and research purposes, studies on low-dose ionizing radiation (LDIR) are limited compared with those on other IR approaches, such as high-dose gamma irradiation and ultraviolet irradiation. High-dose IR affects DNA damage response and nucleotide-protein crosslinking, among other processes; however, the molecular consequences of LDIR have been poorly investigated. Here, we developed a method to profile RNA species crosslinked to an RNA-binding protein, namely, human antigen R (HuR), using LDIR and high-throughput RNA sequencing. The RNA fragments isolated via LDIR-crosslinking and immunoprecipitation sequencing were crosslinked to HuR and protected from RNase-mediated digestion. Upon crosslinking HuR to target mRNAs such as PAX6, ZFP91, NR2F6, and CAND2, the transcripts degraded rapidly in human cell lines. Additionally, PAX6 and NR2F6 downregulation mediated the beneficial effects of LDIR on cell viability. Thus, our approach provides a method for investigating post-transcriptional gene regulation using LDIR.

4.
J Invertebr Pathol ; 201: 108010, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865158

RESUMEN

Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.


Asunto(s)
Oligoquetos , Animales , Filogenia , Receptor Toll-Like 1/genética , Ligandos , Receptor Toll-Like 6/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptores de Reconocimiento de Patrones/genética , Bacterias/metabolismo , Inmunidad Innata/genética , Mamíferos/metabolismo
5.
J Cell Physiol ; 238(10): 2335-2347, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37659097

RESUMEN

Matrix stiffness has been shown to play a critical role in cancer progression by influencing various cellular processes, including epidermal growth factor (EGF) signaling. However, the underlying molecular mechanisms are not fully understood. Here, we investigated the role of adaptor-related protein complex 1 subunit sigma 1 (AP1S1), a component of adaptor protein complex-1, in the regulation of EGF receptor (EGFR) intracellular trafficking during cancer cell progression. We found that AP1S1 expression was upregulated under stiff matrix conditions, resulting in the regulation of EGFR trafficking in non-small cell lung adenocarcinoma cells. Knockout of AP1S1 caused the lysosomal degradation of EGFR, leading to suppressed EGF-induced anaplastic lymphoma receptor tyrosine kinase phosphorylation. In addition, the downregulation of AP1S1 increased the sensitivity of H1975 cancer cells, which are resistant to tyrosine kinase inhibitors, to erlotinib. Collectively, our results suggest that AP1S1 could regulate EGFR recycling under stiff matrix conditions, and AP1S1 inhibition could be a novel strategy for treating cancer cells resistant to EGFR-targeted anticancer drugs.

6.
Sci Rep ; 13(1): 6252, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069244

RESUMEN

Microplastics (MPs) are now a global issue due to increased plastic production and use. Recently, various studies have been performed in response to the human health risk assessment. However, these studies have focused on spherical MPs, which have smooth edges and a spherical shape and account for less than 1% of MPs in nature. Unfortunately, studies on fragment-type MPs are very limited and remain in the initial stages. In this study, we studied the effect that 16.4 µm fragment type polypropylene (PP) MPs, which have an irregular shape and sharp edges and form naturally in the environment, had on breast cancer. The detrimental effects of PPMPs on breast cancer metastasis were examined. Here, 1.6 mg/ml of PPMP, which does not induce cytotoxicity in MDA-MB-231, was used, and at this concentration, PPMP did not induce morphological changes or cellular migrating in the MDA-MB-231 and MCF-7 cells. However, PPMP incubation for 24 hours in the MDA-MB-231 cells significantly altered the level of cell cycle-related transcripts in an RNA-seq analysis. When confirmed by qRT-PCR, the gene expression of TMBIM6, AP2M1, and PTP4A2 was increased, while the transcript level of FTH1 was decreased. Further, secretion of the pro-inflammatory cytokine IL-6 from cancer cells was elevated with the incubation of PPMP for 12 hours. These results suggest that PPMP enhances metastasis-related gene expression and cytokines in breast cancer cells, exacerbating breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Polipropilenos , Microplásticos , Plásticos , Citocinas , Proteínas de la Membrana , Proteínas Reguladoras de la Apoptosis , Proteínas Tirosina Fosfatasas
7.
BMB Rep ; 56(2): 120-125, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36593106

RESUMEN

Karyopherin-α3 (KPNA3), a karyopherin- α isoform, is intimately associated with metastatic progression via epithelial-mesenchymal transition (EMT). However, the molecular mechanism underlying how KPNA3 acts as an EMT inducer remains to be elucidated. In this report, we identified that KPNA3 was significantly upregulated in cancer cells, particularly in triple-negative breast cancer, and its knockdown resulted in the suppression of cell proliferation and metastasis. The comprehensive transcriptome analysis from KPNA3 knockdown cells indicated that KPNA3 is involved in the regulation of numerous EMTrelated genes, including the downregulation of GATA3 and E-cadherin and the up-regulation of HAS2. Moreover, it was found that KPNA3 EMT-mediated metastasis can be achieved by TGF-ß or AKT signaling pathways; this suggests that the novel independent signaling pathways KPNA3-TGF-ß-GATA3-HAS2/E-cadherin and KPNA3-AKT-HAS2/E-cadherin are involved in the EMT-mediated progress of TNBC MDA-MB-231 cells. These findings provide new insights into the divergent EMT inducibility of KPNA3 according to cell and cancer type. [BMB Reports 2023; 56(2): 120-125].


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , alfa Carioferinas , Femenino , Humanos , alfa Carioferinas/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo
8.
Cell Oncol (Dordr) ; 44(6): 1287-1305, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34582006

RESUMEN

PURPOSE: Spatiotemporal regulation of cell membrane dynamics is a major process that promotes cancer cell invasion by acting as a driving force for cell migration. Beta-Pix (ßPix), a guanine nucleotide exchange factor for Rac1, has been reported to be involved in actin-mediated cellular processes, such as cell migration, by interacting with various proteins. As yet, however, the molecular mechanisms underlying ßPix-mediated cancer cell invasion remain unclear. METHODS: The clinical significance of ßPix was analyzed in patients with colorectal cancer (CRC) using public clinical databases. Pull-down and immunoprecipitation assays were employed to identify novel binding partners for ßPix. Additionally, various cell biological assays including immunocytochemistry and time-lapse video microscopy were performed to assess the effects of ßPix on CRC progression. A ßPix-SH3 antibody delivery system was used to determine the effects of the ßPix-Dyn2 complex in CRC cells. RESULTS: We found that the Src homology 3 (SH3) domain of ßPix interacts with the proline-rich domain of Dynamin 2 (Dyn2), a large GTPase. The ßPix-Dyn2 interaction promoted lamellipodia formation, along with plasma membrane localization of membrane-type 1 matrix metalloproteinase (MT1-MMP). Furthermore, we found that Src kinase-mediated phosphorylation of the tyrosine residue at position 442 of ßPix enhanced ßPix-Dyn2 complex formation. Disruption of the ßPix-Dyn2 complex by ßPix-SH3 antibodies targeting intracellular ßPix inhibited CRC cell invasion. CONCLUSIONS: Our data indicate that spatiotemporal regulation of the Src-ßPix-Dyn2 axis is crucial for CRC cell invasion by promoting membrane dynamics and MT1-MMP recruitment into the leading edge. The development of inhibitors that disrupt the ßPix-Dyn2 complex may be a useful therapeutic strategy for CRC.


Asunto(s)
Membrana Celular/metabolismo , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Dinamina II/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Movimiento Celular/genética , Dinamina II/química , Regulación Neoplásica de la Expresión Génica , Oro/química , Células HEK293 , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Nanopartículas del Metal/química , Invasividad Neoplásica , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Seudópodos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/química , Regulación hacia Arriba , Proteína de Unión al GTP rac1/metabolismo , Dominios Homologos src
9.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199510

RESUMEN

During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.


Asunto(s)
Acetiltransferasas/genética , Neoplasias de la Mama/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de Microtúbulos/genética , Tunicamicina/farmacología , Acetilación/efectos de los fármacos , Acetiltransferasas/antagonistas & inhibidores , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Microtúbulos/antagonistas & inhibidores , Microtúbulos/efectos de los fármacos , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Microambiente Tumoral/efectos de los fármacos
10.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801350

RESUMEN

Heavy metals are important for various biological systems, but, in excess, they pose a serious risk to human health. Heavy metals are commonly used in consumer and industrial products. Despite the increasing evidence on the adverse effects of heavy metals, the detailed mechanisms underlying their action on lung cancer progression are still poorly understood. In the present study, we investigated whether heavy metals (mercury chloride and lead acetate) affect cell viability, cell cycle, and apoptotic cell death in human lung fibroblast MRC5 cells. The results showed that mercury chloride arrested the sub-G1 and G2/M phases by inducing cyclin B1 expression. In addition, the exposure to mercury chloride increased apoptosis through the activation of caspase-3. However, lead had no cytotoxic effects on human lung fibroblast MRC5 cells at low concentration. These findings demonstrated that mercury chloride affects the cytotoxicity of MRC5 cells by increasing cell cycle progression and apoptotic cell death.


Asunto(s)
Ciclo Celular , Desinfectantes/farmacología , Fibroblastos/patología , Pulmón/patología , Cloruro de Mercurio/farmacología , Compuestos Organometálicos/farmacología , Supervivencia Celular , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos
11.
Parasit Vectors ; 14(1): 213, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879231

RESUMEN

BACKGROUND: Biliary tract infection with the carcinogenic human liver fluke, Clonorchis sinensis, provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma. Complications are proportional to the intensity and duration of the infection. In addition to mechanical irritation of the biliary epithelia from worms, their excretory-secretory products (ESPs) cause chemical irritation, which leads to inflammation, proliferation, and free radical generation. METHODS: A three-dimensional in vitro cholangiocyte spheroid culture model was established, followed by ESP treatment. This allowed us to examine the intrinsic pathological mechanisms of clonorchiasis via the imitation of prolonged and repetitive in vivo infection. RESULTS: Microarray and RNA-Seq analysis revealed that ESP-treated cholangiocyte H69 spheroids displayed global changes in gene expression compared to untreated spheroids. In ESP-treated H69 spheroids, 185 and 63 probes were found to be significantly upregulated and downregulated, respectively, corresponding to 209 genes (p < 0.01, fold change > 2). RNA-Seq was performed for the validation of the microarray results, and the gene expression patterns in both transcriptome platforms were well matched for 209 significant genes. Gene ontology analysis demonstrated that differentially expressed genes were mainly classified into immune system processes, the extracellular region, and the extracellular matrix. Among the upregulated genes, four genes (XAF1, TRIM22, CXCL10, and BST2) were selected for confirmation using quantitative RT-PCR, resulting in 100% similar expression patterns in microarray and RNA-Seq. CONCLUSIONS: These findings broaden our understanding of the pathological pathways of liver fluke-associated hepatobiliary disorders and suggest a novel therapeutic strategy for this infectious cancer.


Asunto(s)
Conductos Biliares/parasitología , Clonorquiasis/genética , Clonorchis sinensis/metabolismo , Proteínas del Helminto/metabolismo , Esferoides Celulares/parasitología , Animales , Conductos Biliares/citología , Clonorquiasis/metabolismo , Clonorquiasis/parasitología , Clonorchis sinensis/genética , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Perfilación de la Expresión Génica , Proteínas del Helminto/genética , Humanos , Masculino , Conejos , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
12.
Genes (Basel) ; 12(2)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670352

RESUMEN

Bisphenol A (BPA) is a xenoestrogen chemical commonly used to manufacture polycarbonate plastics and epoxy resin and might affect various human organs. However, the cellular effects of BPA on the eyes have not been widely investigated. This study aimed to investigate the cellular cytotoxicity by BPA exposure on human retinoblastoma cells. BPA did not show cytotoxic effects, such as apoptosis, alterations to cell viability and cell cycle regulation. Comparative analysis of the transcriptome and proteome profiles were investigated after long-term exposure of Y79 cells to low doses of BPA. Transcriptome analysis using RNA-seq revealed that mRNA expression of the post-transcriptional regulation-associated gene sets was significantly upregulated in the BPA-treated group. Cell cycle regulation-associated gene sets were significantly downregulated by exposure to BPA. Interestingly, RNA-seq analysis at the transcript level indicated that alternative splicing events, particularly retained introns, were noticeably altered by low-dose BPA treatment. Additionally, proteome profiling using MALDI-TOF-MS identified a total of nine differentially expressed proteins. These results suggest that alternative splicing events and altered gene/protein expression patterns are critical phenomena affected by long-term low-dose BPA exposure. This represents a novel marker for the detection of various diseases associated with environmental pollutants such as BPA.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Fenoles/farmacología , Proteoma/genética , Retinoblastoma/genética , Transcriptoma/genética , Empalme Alternativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Línea Celular Tumoral , Disruptores Endocrinos/toxicidad , Ojo/efectos de los fármacos , Ojo/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fenoles/toxicidad , RNA-Seq , Retinoblastoma/inducido químicamente , Retinoblastoma/patología
13.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670495

RESUMEN

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/genética , Caspasa 3/genética , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/genética , Cloruro de Mercurio/farmacología , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
Genes (Basel) ; 12(2)2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573186

RESUMEN

Uracil is an unavoidable aberrant base in DNA sequences, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires multiple biochemical steps with conformational changes of DNA that inhibit DNA replication and interfere with transcription. However, the relevance of uracil in DNA for cellular physiology and transcriptional regulation is not fully understood. We investigated the functional roles of SMUG1 using knock-down (KD) and knock-out (KO) models. The proliferation ratio of SMUG1 KD and KO cells was decreased compared to WT control cells, and the cell cycle was arrested in the G2/M phases before the transition to mitosis. The apoptotic cell death was increased in KD and KO cell lines through the increase of BAX and active caspase 3 expression. Phospho-gamma-H2AX expression, which reflected accumulated DNA damage, was also increased in KO cells. Moreover, the apoptotic cells by DNA damage accumulation were markedly increased in SMUG1 KD and KO cells after ultraviolet C irradiation. Transcriptomic analysis using RNA-seq revealed that SMUG1 was involved in gene sets expression including cell cycle transition and chromatin silencing. Together, the results implicate SMUG1 as a critical factor in cell cycle and transcriptional regulation.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Uracil-ADN Glicosidasa/genética , Uracilo/metabolismo , Apoptosis/genética , Carcinoma Hepatocelular/patología , Proliferación Celular/genética , Supervivencia Celular/genética , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Uracil-ADN Glicosidasa/antagonistas & inhibidores
15.
Cell Mol Life Sci ; 77(20): 4143-4161, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31912196

RESUMEN

Myofibroblasts are the major cell type that is responsible for increase in the mechanical stiffness in fibrotic tissues. It has well documented that the TGF-ß/Smad axis is required for myofibroblast differentiation under the rigid substrate condition. However, the mechanism driving myofibroblast differentiation in soft substrates remains unknown. In this research, we demonstrated that interaction of yes-associated protein (YAP) and acetylated microtubule via dynein, a microtubule motor protein drives nuclear localization of YAP in the soft matrix, which in turn increased TGF-ß1-induced transcriptional activity of Smad for myofibroblast differentiation. Pharmacological and genetical disruption of dynein impaired the nuclear translocation of YAP and decreased the TGF-ß1-induced Smad activity even though phosphorylation and nuclear localization of Smad occurred normally in α-tubulin acetyltransferase 1 (α-TAT1) knockout cell. Moreover, microtubule acetylation prominently appeared in the fibroblast-like cells nearby the blood vessel in the fibrotic liver induced by CCl4 administration, which was conversely decreased by TGF-ß receptor inhibitor. As a result, quantitative inhibition of microtubule acetylation may be suggested as a new target for overcoming fibrotic diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Dineínas/metabolismo , Fibroblastos/metabolismo , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología , Acetilación , Animales , Diferenciación Celular/fisiología , Línea Celular , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Fosforilación/fisiología , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Señalizadoras YAP
16.
Arch Toxicol ; 94(1): 127-140, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31745603

RESUMEN

Methylparaben is most frequently used as an antimicrobial preservative in pharmaceuticals and foods. Methylparaben has been subjected to toxicological studies owing to the increasing concern regarding its possible impact on the environment and human health. However, the cytotoxicity and underlying mechanisms of methylparaben exposure in human lung cells have not been explored. Here, we investigated the effect of methylparaben on cell cycle, apoptotic pathways, and changes in the transcriptome profiles in human lung cells. Our results demonstrate that treatment with methylparaben causes inhibition of cell growth. In addition, methylparaben induced S- and G2/M-phase arrest as a result of enhanced apoptosis. Transcriptome analysis using RNA-seq revealed that mRNA expression of ER stress- and protein misfolding-related gene sets was upregulated in methylparaben-treated group. RNA splicing- and maturation-related gene sets were significantly down-regulated by methylparaben treatment. Interestingly, RNA-seq analysis at the transcript level revealed that alternative splicing events, especially retained intron, were markedly changed by a low dose of methylparaben treatment. Altogether, these data show that methylparaben induces an early phase of apoptosis through cell cycle arrest and downregulation of mRNA maturation.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/patología , Parabenos/farmacología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Transcriptoma/efectos de los fármacos
17.
Biochem Biophys Res Commun ; 508(2): 576-582, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30514438

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most lethal cancer worldwide. Although gene mutations associated with HCC development have been intensively studied, how epigenetic factors specifically modulate the functional properties of HCC by regulating target gene expression is unclear. Here we demonstrated the overexpression of KDM3B in liver tissue of HCC patients using public RNA-seq data. Ablation of KDM3B by CRISPR/Cas9 retarded the cell cycle and proliferation of hepatocarcinoma HepG2 cells. Approximately 30% of KDM3B knockout cells exhibited mitotic spindle multipolarity as a chromosome instability (CIN) phenotype. RNA-seq analysis of KDM3B knockout revealed significantly down-regulated expression of cell cycle related genes, especially cell proliferation factor CDC123. Furthermore, the expression level of Cyclin D1 was reduced in KDM3B knockout by proteosomal degradation without any change in the expression of CCND1, which encodes Cyclin D1. The results implicate KDM3B as a crucial epigenetic factor in cell cycle regulation that manipulates chromatin dynamics and transcription in HCC, and identifies a potential gene therapy target for effective treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Genes cdc/genética , Histona Demetilasas con Dominio de Jumonji/fisiología , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Histona Demetilasas con Dominio de Jumonji/análisis , Histona Demetilasas con Dominio de Jumonji/genética , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Transcripción Genética
18.
PLoS One ; 13(8): e0202935, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30142192

RESUMEN

The human myeloid leukemia cell line HL-60 differentiate into monocytes following treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the mechanism underlying the differentiation of these cells in response to TPA has not been fully elucidated. In this study, we performed ChIP-seq profiling of RNA Pol II, HDAC2, Acetyl H3 (AcH3), and H3K27me3 and analyzed differential chromatin state changes during TPA-induced differentiation of HL-60 cells. We focused on atypically active genes, which showed enhanced H3 acetylation despite increased HDAC2 recruitment. We found that HDAC2 positively regulates the expression of these genes in a histone deacetylase activity-independent manner. HDAC2 interacted with and recruited paired box 5 (PAX5) to the promoters of the target genes and regulated HL-60 cell differentiation by PAX5-mediated gene activation. Taken together, these data elucidated the specific-chromatin status during HL-60 cell differentiation following TPA exposure and suggested that HDAC2 can activate transcription of certain genes through interactions with PAX5 in a deacetylase activity-independent pathway.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Histona Desacetilasa 2/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Activación Transcripcional/efectos de los fármacos , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Células HL-60 , Humanos , Factor de Transcripción PAX5/metabolismo
19.
Biochem Biophys Res Commun ; 500(4): 937-943, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29709477

RESUMEN

Accumulating evidence has shown that matrix stiffening in cancer tissue by the deposition of extracellular matrix (ECM) is closely related with severe tumor progression. However, much less is known about the genes affected by matrix stiffness and its signaling for cancer progression. In the current research, we investigated the differential gene expression of a non-small lung adenocarcinoma cell line, H1299, cultured under the conditions of soft (∼0.5 kPa) and stiff (∼40 kPa) matrices, mimicking the mechanical environments of normal and cancerous tissues, respectively. For integrated transcriptome analysis, the genes identified by ECM stiffening were compared with 8248 genes retrieved from The Cancer Genome Atlas Lung Adenocarcinoma (TCGA). In stiff matrix, 29 genes were significantly upregulated, while 75 genes were downregulated. The screening of hazard ratios for these genes using the Kaplan-Meier Plotter identified 8 genes most closely associated with cancer progression under the condition of matrix stiffening. Among these genes, spindle pole body component 25 homolog (SPC25) was one of the most up-regulated genes in stiff matrix and tumor tissue. Knockdown of SPC25 in H1299 cells using shRNA significantly inhibited cell proliferation with downregulation of the expression of checkpoint protein, Cyclin B1, under the condition of stiff matrix whereas the proliferation rate in soft matrix was not affected by SPC25 silencing. Thus, our findings provide novel key molecules for studying the relationship of extracellular matrix stiffening and cancer progression.


Asunto(s)
Proliferación Celular/genética , Matriz Extracelular/química , Regulación Neoplásica de la Expresión Génica , Mecanotransducción Celular/genética , Proteínas Asociadas a Microtúbulos/genética , Mucosa Respiratoria/metabolismo , Atlas como Asunto , Fenómenos Biomecánicos , Ciclo Celular/genética , Línea Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Perfilación de la Expresión Génica , Células HEK293 , Dureza , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Anotación de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Mucosa Respiratoria/patología , Transcriptoma
20.
Sci Rep ; 7(1): 6847, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754957

RESUMEN

Increasing matrix stiffness caused by the extracellular matrix (ECM) deposition surrounding cancer cells is accompanied by epithelial-mesenchymal transition (EMT). Here, we show that expression levels of EMT marker genes along with discoidin domain receptor 2 (DDR2) can increase upon matrix stiffening. DDR2 silencing by short hairpin RNA downregulated EMT markers. Promoter analysis and chromatin immunoprecipitation revealed that c-Myb and LEF1 may be responsible for DDR2 induction during cell culture on a stiff matrix. Mechanistically, c-Myb acetylation by p300, which is upregulated on the stiff matrix, seems to be necessary for the c-Myb-and-LEF1-mediated DDR2 expression. Finally, we found that the c-Myb-DDR2 axis is crucial for lung cancer cell line proliferation and expression of EMT marker genes in a stiff environment. Thus, our results suggest that DDR2 regulation by p300 expression and/or c-Myb acetylation upon matrix stiffening may be necessary for regulation of EMT and invasiveness of lung cancer cells.


Asunto(s)
Receptor con Dominio Discoidina 2/metabolismo , Transición Epitelial-Mesenquimal , Matriz Extracelular/química , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Acetilación , Línea Celular Tumoral , Proliferación Celular , Receptor con Dominio Discoidina 2/genética , Células HEK293 , Humanos , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA