Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Exp Mol Med ; 51(12): 1-11, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31811117

RESUMEN

Glioblastoma (GBM) is the most lethal primary brain tumor with few treatment options. The survival of glioma-initiating cells (GICs) is one of the major factors contributing to treatment failure. GICs frequently produce and respond to their own growth factors that support cell proliferation and survival. In this study, we aimed to identify critical autocrine factors mediating GIC survival and to evaluate the anti-GBM effect of antagonizing these factors. Proteomic analysis was performed using conditioned media from two different patient-derived GBM tumor spheres under a growth factor-depleted status. Then, the antitumor effects of inhibiting an identified autocrine factor were evaluated by bioinformatic analysis and molecular validation. Proteins secreted by sphere-forming GICs promote cell proliferation/survival and detoxify reactive oxygen species (ROS). Among these proteins, we focused on midkine (MDK) as a clinically significant and pathologically relevant autocrine factor. Antagonizing MDK reduced the survival of GBM tumor spheres through the promotion of cell cycle arrest and the consequent apoptotic cell death caused by oxidative stress-induced DNA damage. We also identified PCBP4, a novel molecular predictor of resistance to anti-MDK treatment. Collectively, our results indicate that MDK inhibition is an important therapeutic option by suppressing GIC survival through the induction of ROS-mediated cell cycle arrest and apoptosis.


Asunto(s)
Sistema Nervioso Central/metabolismo , Glioblastoma/metabolismo , Midkina/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Ciclo Celular/genética , Ciclo Celular/fisiología , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Humanos , Técnicas In Vitro , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN
3.
Neuro Oncol ; 21(2): 222-233, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29939324

RESUMEN

BACKGROUND: Cancer is a complex disease with profound genomic alterations and extensive heterogeneity. Recent studies on large-scale genomics have shed light on the impact of core oncogenic pathways, which are frequently dysregulated in a wide spectrum of cancer types. Aberrant activation of the hepatocyte growth factor (HGF) signaling axis has been associated with promoting various oncogenic programs during tumor initiation, progression, and treatment resistance. As a result, HGF-targeted therapy has emerged as an attractive therapeutic approach. However, recent clinical trials involving HGF-targeted therapies have demonstrated rather disappointing results. Thus, an alternative, in-depth assessment of new patient stratification is necessary to shift the current clinical course. METHODS: To address such challenges, we have evaluated the therapeutic efficacy of YYB-101, an HGF-neutralizing antibody, in a series of primary glioblastoma stem cells (GSCs) both in vitro and in vivo. Furthermore, we performed genome and transcriptome analysis to determine genetic and molecular traits that exhibit therapeutic susceptibility to HGF-mediated therapy. RESULTS: We have identified several differentially expressed genes, including MET, KDR, and SOX3, which are associated with tumor invasiveness, malignancy, and unfavorable prognosis in glioblastoma patients. We also demonstrated the HGF-MET signaling axis as a key molecular determinant in GSC invasion, and we discovered that a significant association in HGF expression existed between mesenchymal phenotype and immune cell recruitment. CONCLUSIONS: Upregulation of MET and mesenchymal cellular state are essential in generating HGF-mediated therapeutic responses. Our results provide an important framework for evaluating HGF-targeted therapy in future clinical settings.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica/métodos , Glioblastoma/tratamiento farmacológico , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Transcriptoma , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Femenino , Glioblastoma/genética , Glioblastoma/patología , Factor de Crecimiento de Hepatocito/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fenotipo , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Genet ; 50(10): 1399-1411, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30262818

RESUMEN

Outcomes of anticancer therapy vary dramatically among patients due to diverse genetic and molecular backgrounds, highlighting extensive intertumoral heterogeneity. The fundamental tenet of precision oncology defines molecular characterization of tumors to guide optimal patient-tailored therapy. Towards this goal, we have established a compilation of pharmacological landscapes of 462 patient-derived tumor cells (PDCs) across 14 cancer types, together with genomic and transcriptomic profiling in 385 of these tumors. Compared with the traditional long-term cultured cancer cell line models, PDCs recapitulate the molecular properties and biology of the diseases more precisely. Here, we provide insights into dynamic pharmacogenomic associations, including molecular determinants that elicit therapeutic resistance to EGFR inhibitors, and the potential repurposing of ibrutinib (currently used in hematological malignancies) for EGFR-specific therapy in gliomas. Lastly, we present a potential implementation of PDC-derived drug sensitivities for the prediction of clinical response to targeted therapeutics using retrospective clinical studies.


Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Farmacogenética/métodos , Medicina de Precisión/métodos , Antineoplásicos/clasificación , Antineoplásicos/aislamiento & purificación , Biomarcadores Farmacológicos/análisis , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Linaje de la Célula/efectos de los fármacos , Linaje de la Célula/genética , Ensayos de Selección de Medicamentos Antitumorales , Estudios de Factibilidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Oncología Médica/métodos , Neoplasias/patología , Panobinostat/uso terapéutico , Atención Dirigida al Paciente/métodos , Cultivo Primario de Células/métodos , Células Tumorales Cultivadas
5.
Int J Oncol ; 48(3): 1053-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26783102

RESUMEN

CCRT (concomitant chemotherapy and radiation therapy) is often used for glioblastoma multiforme (GBM) treatment after surgical therapy, however, patients treated with CCRT undergo poor prognosis due to development of treatment resistant recurrence. Many studies have been performed to overcome these problems and to discover genes influencing treatment resistance. To discover potential genes inducing CCRT resistance in GBM, we used whole genome screening by infecting shRNA pool in patient-derived cell. The cells infected ~8,000 shRNAs were implanted in mouse brain and treated RT/TMZ as in CCRT treated patients. We found DDX6 as the candidate gene for treatment resistance after screening and establishing DDX6 knock down cells for functional validation. Using these cells, we confirmed tumor associated ability of DDX6 in vitro and in vivo. Although proliferation improvement was not found, decreased DDX6 influenced upregulated clonogenic ability and resistant response against radiation treatment in vivo and in vitro. Taken together, we suggest that DDX6 discovered by using whole genome screening was responsible for radio- and chemoresistance in GBM.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , ARN Helicasas DEAD-box/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Proteínas Proto-Oncogénicas/genética , Animales , Proliferación Celular , Supervivencia Celular , Dacarbazina/análogos & derivados , Dacarbazina/química , Resistencia a Antineoplásicos , Biblioteca de Genes , Genoma , Células HEK293 , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , ARN Interferente Pequeño/metabolismo , Temozolomida , Regulación hacia Arriba
6.
Oncotarget ; 6(29): 27239-51, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26336988

RESUMEN

Glioblastoma multiforme (GBM) possesses florid angiogenesis. However, the anti-angiogenic agent, Bevacizumab, did not improve overall survival of GBM patients. For more durable anti-angiogenic treatment, we interrogated resistant mechanisms of GBM against Bevacizumab. Serial orthotopic transplantation of in vivo Bevacizumab-treated GBM cells provoked complete refractoriness to the anti-angiogenic treatment. These tumors were also highly enriched with malignant phenotypes such as invasiveness, epithelial to mesenchymal transition, and stem-like features. Through transcriptome analysis, we identified that Talin1 (TLN1) significantly increased in the refractory GBMs. Inhibition of TLN1 not only attenuated malignant characteristics of GBM cells but also reversed the resistance to the Bevacizumab treatment. These data implicate TLN1 as a novel therapeutic target for GBM to overcome resistance to anti-angiogenic therapies.


Asunto(s)
Glioblastoma/metabolismo , Células Madre/citología , Talina/antagonistas & inhibidores , Talina/metabolismo , Inhibidores de la Angiogénesis/química , Animales , Bevacizumab/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Células Madre Neoplásicas/citología , Fenotipo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA