Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Life Sci ; 344: 122547, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460810

RESUMEN

Hepatic stellate cells (HSCs) play central roles in liver disease pathogenesis, spanning steatosis to cirrhosis and hepatocellular carcinoma. These cells, located in the liver's sinusoidal space of Disse, transition from a quiescent, vitamin A-rich state to an activated, myofibroblast-like phenotype in response to liver injury. This activation results from a complex interplay of cytokines, growth factors, and oxidative stress, leading to excessive collagen deposition and liver fibrosis, a hallmark of chronic liver diseases. Recently, HSCs have gained recognition for their dynamic, multifaceted roles in liver health and disease. Attention has shifted toward their involvement in various liver conditions, including acute liver injury, alcoholic and non-alcoholic fatty liver disease, and liver regeneration. This review aims to explore diverse functions of HSCs in these acute or chronic liver pathologies, with a focus on their roles beyond fibrogenesis. HSCs exhibit a wide range of actions, including lipid storage, immunomodulation, and interactions with other hepatic and extrahepatic cells, making them pivotal in the hepatic microenvironment. Understanding HSC involvement in the progression of liver diseases can offer novel insights into pathogenic mechanisms and guide targeted therapeutic strategies for various liver conditions.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Citocinas/metabolismo
2.
Neuro Endocrinol Lett ; 43(3): 140-144, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179724

RESUMEN

INTRODUCTION: Primary aldosteronism is now recognized as the most common cause of secondary hypertension. Increasing evidence has demonstrated increased cardiovascular events in primary aldosteronism patients. Heart failure and atrial fibrillation are the most common cardiovascular complications occurring in these patients, and a few cases of coronary artery disease have been reported. Herein, we report a rare case of primary aldosteronism in a patient who presented with myocardial infarction associated with coronary embolism. CASE REPORT: A 52-year-old woman was admitted to our hospital because of chest pain. ST-segment elevation was observed on an electrocardiogram. Although no significant stenosis was observed, embolization of the far distal left anterior descending artery was noticed on angiography. Blood test results revealed hypokalemia and increased aldosterone-renin ratio. Abdominal computed tomography revealed an adenoma in the left adrenal gland. After adrenalectomy, the serum potassium level normalized, and blood pressure was well controlled. CONCLUSION: Primary aldosteronism must be considered in patients who have had various cardiovascular diseases, including embolisms and situations in which the discrimination of secondary hypertension is necessary.


Asunto(s)
Embolia , Hiperaldosteronismo , Hipertensión , Infarto del Miocardio , Femenino , Humanos , Persona de Mediana Edad , Hiperaldosteronismo/complicaciones , Hiperaldosteronismo/diagnóstico , Glándulas Suprarrenales , Hipertensión/complicaciones , Arritmias Cardíacas , Infarto del Miocardio/etiología , Infarto del Miocardio/complicaciones , Embolia/complicaciones , Aldosterona
3.
Insect Biochem Mol Biol ; 148: 103816, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35926689

RESUMEN

Antimicrobial peptides (AMPs) are core components of innate immunity to protect insects against microbial infections. Nuclear receptors (NRs) are ligand-dependent transcription factors that can regulate the expression of genes critical for insect development including molting and metamorphosis. However, the role of NRs in host innate immune response to microbial infection remains poorly understood in Tribolium castaneum (T. castaneum). Here, we show that estrogen-related receptor (ERR), an insect ortholog of the mammalian ERR family of NRs, is a novel transcriptional regulator of AMP genes for innate immune response of T. castaneum. Tribolium ERR (TcERR) expression was induced by immune deficiency (IMD)-Relish signaling in response to infection by Escherichia coli (E. coli), a Gram-negative bacterium, as demonstrated in TcIMD-deficient beetles. Interestingly, genome-wide transcriptome analysis of TcERR-deficient old larvae using RNA-sequencing analysis showed that TcERR expression was positively correlated with gene transcription levels of AMPs including attacins, defensins, and coleoptericin. Moreover, chromatin immunoprecipitation analysis revealed that TcERR could directly bind to ERR-response elements on promoters of genes encoding defensin3 and coleoptericin, critical for innate immune response of T. castaneum. Finally, TcERR-deficient old larvae infected with E. coli displayed enhanced bacterial load and significantly less host survival. These findings suggest that TcERR can coordinate transcriptional regulation of AMPs and host innate immune response to bacterial infection.


Asunto(s)
Tribolium , Animales , Péptidos Antimicrobianos , Escherichia coli , Estrógenos/metabolismo , Inmunidad Innata/genética , Proteínas de Insectos/metabolismo , Larva , Mamíferos , Receptores Citoplasmáticos y Nucleares/metabolismo , Tribolium/genética , Tribolium/metabolismo
4.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408955

RESUMEN

The pineal hormone, melatonin, plays important roles in circadian rhythms and energy metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However, the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor 1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin activated JNK signaling and upregulated hepcidin expression, both of which were significantly decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally, melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice, which were reversed by the luzindole treatment. These findings reveal a previously unrecognized role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.


Asunto(s)
Hepcidinas , Melatonina , Animales , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostasis , Hierro/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Ratones , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo
7.
Antioxidants (Basel) ; 10(10)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34679725

RESUMEN

Hepcidin, a major regulator of systemic iron homeostasis, is mainly induced in hepatocytes by activating bone morphogenetic protein 6 (BMP-6) signaling in response to changes in the iron status. Small heterodimer partner-interacting leucine zipper protein (SMILE), a polyphenol-inducible transcriptional co-repressor, regulates hepatic gluconeogenesis and lipogenesis. Here, we examine the epigallocatechin-3-gallate (EGCG) effect on BMP-6-mediated SMAD1/5/8 transactivation of the hepcidin gene. EGCG treatment significantly decreased BMP-6-induced hepcidin gene expression and secretion in hepatocytes, which, in turn, abated ferroportin degradation. SMILE overexpression significantly decreased BMP receptor-induced hepcidin promoter activity. SMILE overexpression also significantly suppressed BMP-6-mediated induction of hepcidin mRNA and its secretion in HepG2 and AML12 cells. EGCG treatment inhibited BMP-6-mediated hepcidin gene expression and secretion, which were significantly reversed by SMILE knockdown in hepatocytes. Interestingly, SMILE physically interacted with SMAD1 in the nucleus and significantly blocked DNA binding of the SMAD complex to the BMP-response element on the hepcidin gene promoter. Taken together, these findings suggest that SMILE is a novel transcriptional repressor of BMP-6-mediated hepcidin gene expression, thus contributing to the control of iron homeostasis.

8.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199599

RESUMEN

Orphan nuclear receptor estrogen-related receptor γ (ERRγ) is an important transcription factor modulating gene transcription involved in endocrine control of liver metabolism. Transferrin receptor 2 (TFR2), a carrier protein for transferrin, is involved in hepatic iron overload in alcoholic liver disease (ALD). However, TFR2 gene transcriptional regulation in hepatocytes remains largely unknown. In this study, we described a detailed molecular mechanism of hepatic TFR2 gene expression involving ERRγ in response to an endocannabinoid 2-arachidonoylglycerol (2-AG). Treatment with 2-AG and arachidonyl-2'-chloroethylamide, a selective cannabinoid receptor type 1 (CB1) receptor agonist, increased ERRγ and TFR2 expression in hepatocytes. Overexpression of ERRγ was sufficient to induce TFR2 expression in both human and mouse hepatocytes. In addition, ERRγ knockdown significantly decreased 2-AG or alcohol-mediated TFR2 gene expression in cultured hepatocytes and mouse livers. Finally, deletion and mutation analysis of the TFR2 gene promoter demonstrated that ERRγ directly modulated TFR2 gene transcription via binding to an ERR-response element. This was further confirmed by chromatin immunoprecipitation assay. Taken together, these results reveal a previously unrecognized role of ERRγ in the transcriptional regulation of TFR2 gene expression in response to alcohol.


Asunto(s)
Hepatopatías Alcohólicas/genética , Hígado/efectos de los fármacos , Receptor Cannabinoide CB1/genética , Receptores de Estrógenos/genética , Receptores de Transferrina/genética , Alcoholes/farmacología , Animales , Ácidos Araquidónicos/farmacología , Endocannabinoides/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glicéridos/farmacología , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Hierro/metabolismo , Hígado/metabolismo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Regiones Promotoras Genéticas , Receptor Cannabinoide CB1/agonistas , Eliminación de Secuencia/genética , Transferrina/genética , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA