Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Endocr Soc ; 8(7): bvae100, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38831864

RESUMEN

Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the ß-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates ß-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and ß-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of ß-cell mass, and measurements of ß-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.

2.
Pharmacol Res Perspect ; 9(2): e00736, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33694300

RESUMEN

Chronic elevations in fatty acid metabolites termed prostaglandins can be found in circulation and in pancreatic islets from mice or humans with diabetes and have been suggested as contributing to the ß-cell dysfunction of the disease. Two-series prostaglandins bind to a family of G-protein-coupled receptors, each with different biochemical and pharmacological properties. Prostaglandin E receptor (EP) subfamily agonists and antagonists have been shown to influence ß-cell insulin secretion, replication, and/or survival. Here, we define EP3 as the sole prostanoid receptor family member expressed in a rat ß-cell-derived line that regulates glucose-stimulated insulin secretion. Several other agonists classically understood as selective for other prostanoid receptor family members also reduce glucose-stimulated insulin secretion, but these effects are only observed at relatively high concentrations, and, using a well-characterized EP3-specific antagonist, are mediated solely by cross-reactivity with rat EP3. Our findings confirm the critical role of EP3 in regulating ß-cell function, but are also of general interest, as many agonists supposedly selective for other prostanoid receptor family members are also full and efficacious agonists of EP3. Therefore, care must be taken when interpreting experimental results from cells or cell lines that also express EP3.


Asunto(s)
Glucosa/metabolismo , Secreción de Insulina/fisiología , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina , Ratas , Subtipo EP3 de Receptores de Prostaglandina E/antagonistas & inhibidores
3.
J Biol Chem ; 293(47): 18086-18098, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30228187

RESUMEN

Secreted proteins are important metabolic regulators in both healthy and disease states. Here, we sought to investigate the mechanism by which the secreted protein complement 1q-like-3 (C1ql3) regulates insulin secretion from pancreatic ß-cells, a key process affecting whole-body glucose metabolism. We found that C1ql3 predominantly inhibits exendin-4- and cAMP-stimulated insulin secretion from mouse and human islets. However, to a lesser extent, C1ql3 also reduced insulin secretion in response to KCl, the potassium channel blocker tolbutamide, and high glucose. Strikingly, C1ql3 did not affect insulin secretion stimulated by fatty acids, amino acids, or mitochondrial metabolites, either at low or submaximal glucose concentrations. Additionally, C1ql3 inhibited glucose-stimulated cAMP levels, and insulin secretion stimulated by exchange protein directly activated by cAMP-2 and protein kinase A. These results suggest that C1ql3 inhibits insulin secretion primarily by regulating cAMP signaling. The cell adhesion G protein-coupled receptor, brain angiogenesis inhibitor-3 (BAI3), is a C1ql3 receptor and is expressed in ß-cells and in mouse and human islets, but its function in ß-cells remained unknown. We found that siRNA-mediated Bai3 knockdown in INS1(832/13) cells increased glucose-stimulated insulin secretion. Furthermore, incubating the soluble C1ql3-binding fragment of the BAI3 protein completely blocked the inhibitory effects of C1ql3 on insulin secretion in response to cAMP. This suggests that BAI3 mediates the inhibitory effects of C1ql3 on insulin secretion from pancreatic ß-cells. These findings demonstrate a novel regulatory mechanism by which C1ql3/BAI3 signaling causes an impairment of insulin secretion from ß-cells, possibly contributing to the progression of type 2 diabetes in obesity.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adipoquinas , Animales , Línea Celular , Complemento C1q , Proteínas del Sistema Complemento/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Secreción de Insulina , Proteínas del Tejido Nervioso/genética , Ratas
4.
Mol Cancer Res ; 15(12): 1792-1802, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28851815

RESUMEN

Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Melanoma/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas de Unión a Telómeros/genética , Adenilil Ciclasas/efectos de los fármacos , Adenilil Ciclasas/genética , Animales , Línea Celular Tumoral , Colforsina/administración & dosificación , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Metástasis de la Neoplasia , Receptor de Melanocortina Tipo 1/genética , Complejo Shelterina , Transducción de Señal/efectos de los fármacos
5.
Diabetes ; 65(9): 2700-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284112

RESUMEN

Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic ß-cells. To investigate the effects of age on ß-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the ß-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the ß-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting ß-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.


Asunto(s)
Envejecimiento/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Electrofisiología , Glucosa/metabolismo , Humanos , Técnicas In Vitro , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , NADP/metabolismo
6.
Mol Endocrinol ; 30(5): 543-56, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27049466

RESUMEN

A defining characteristic of type 1 diabetes mellitus (T1DM) pathophysiology is pancreatic ß-cell death and dysfunction, resulting in insufficient insulin secretion to properly control blood glucose levels. Treatments that promote ß-cell replication and survival, thus reversing the loss of ß-cell mass, while also preserving ß-cell function, could lead to a real cure for T1DM. The α-subunit of the heterotrimeric Gz protein, Gαz, is a tonic negative regulator of adenylate cyclase and downstream cAMP production. cAMP is one of a few identified signaling molecules that can simultaneously have a positive impact on pancreatic islet ß-cell proliferation, survival, and function. The purpose of our study was to determine whether mice lacking Gαz might be protected, at least partially, from ß-cell loss and dysfunction after streptozotocin treatment. We also aimed to determine whether Gαz might act in concert with an activator of the cAMP-stimulatory glucagon-like peptide 1 receptor, exendin-4 (Ex4). Without Ex4 treatment, Gαz-null mice still developed hyperglycemia, albeit delayed. The same finding held true for wild-type mice treated with Ex4. With Ex4 treatment, Gαz-null mice were protected from developing severe hyperglycemia. Immunohistological studies performed on pancreas sections and in vitro apoptosis, cytotoxicity, and survival assays demonstrated a clear effect of Gαz signaling on pancreatic ß-cell replication and death; ß-cell function was also improved in Gαz-null islets. These data support our hypothesis that a combination of therapies targeting both stimulatory and inhibitory pathways will be more effective than either alone at protecting, preserving, and possibly regenerating ß-cell mass and function in T1DM.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/metabolismo , Exenatida , Glucosa/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Péptidos/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología , Ponzoñas/metabolismo
7.
JPEN J Parenter Enteral Nutr ; 40(7): 1042-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-25934045

RESUMEN

INTRODUCTION: Parenteral nutrition (PN) increases the risk of infection in critically ill patients and is associated with defects in gastrointestinal innate immunity. Goblet cells produce mucosal defense compounds, including mucin (principally MUC2), trefoil factor 3 (TFF3), and resistin-like molecule ß (RELMß). Bombesin (BBS), a gastrin-releasing peptide analogue, experimentally reverses PN-induced defects in Paneth cell innate immunity. We hypothesized that PN reduces goblet cell product expression and PN+BBS would reverse these PN-induced defects. METHODS: Two days after intravenous cannulation, male Institute of Cancer Research mice were randomized to chow (n = 15), PN (n = 13), or PN+BBS (15 µg tid) (n = 12) diets for 5 days. Defined segments of ileum and luminal fluid were analyzed for MUC2, TFF3, and RELMß by quantitative reverse transcriptase polymerase chain reaction and Western blot. Th2 cytokines interleukin (IL)-4 and IL-13 were measured by enzyme-linked immunosorbent assay. RESULTS: Compared with chow, PN significantly reduced MUC2 in ileum (P < .01) and luminal fluid (P = .01). BBS supplementation did not improve ileal or luminal MUC2 compared with PN (P > .3). Compared with chow, PN significantly reduced TFF3 in ileum (P < .02) and luminal fluid (P < .01). BBS addition did not improve ileal or luminal TFF3 compared with PN (P > .3). Compared with chow, PN significantly reduced ileal RELMß (P < .01). BBS supplementation significantly increased ileal RELMß to levels similar to chow (P < .03 vs PN; P > .6 vs chow). Th2 cytokines were decreased with PN and returned to chow levels with BBS. CONCLUSION: PN significantly impairs the goblet cell component of innate mucosal immunity. BBS only preserves goblet cell RELMß during PN but not other goblet cell products measured.


Asunto(s)
Bombesina/farmacología , Células Caliciformes/efectos de los fármacos , Hormonas Ectópicas/metabolismo , Nutrición Parenteral , Animales , Células Caliciformes/metabolismo , Hormonas Ectópicas/genética , Íleon/efectos de los fármacos , Íleon/metabolismo , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Mucina 2/genética , Mucina 2/metabolismo , Células de Paneth/efectos de los fármacos , Células de Paneth/metabolismo , Factor Trefoil-3/genética , Factor Trefoil-3/metabolismo
8.
Mol Endocrinol ; 29(7): 978-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25984632

RESUMEN

Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased ß-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects ß-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate ß-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect ß-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects ß-cells from apoptosis.


Asunto(s)
Apoptosis , Colecistoquinina/biosíntesis , Citoprotección , Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Índice de Masa Corporal , Línea Celular Tumoral , Colecistoquinina/metabolismo , AMP Cíclico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citoprotección/efectos de los fármacos , Péptido 1 Similar al Glucagón/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Datos de Secuencia Molecular , Obesidad/genética , Obesidad/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Ratas , Receptores de Colecistoquinina/metabolismo
9.
J Investig Med High Impact Case Rep ; 3(3): 2324709615603199, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26904699

RESUMEN

Tumor lysis syndrome (TLS) is a known complication of malignancy and its treatment. The incidence varies on malignancy type, but is most common with hematologic neoplasms during cytotoxic treatment. Spontaneous TLS is thought to be rare. This case study is of a 62-year-old female admitted with multisystem organ failure, with subsequent diagnosis of aggressive B cell lymphoma. On admission, laboratory abnormalities included renal failure, elevated uric acid (20.7 mg/dL), and 3+ amorphous urates on urinalysis. Oliguric renal failure persisted despite aggressive hydration and diuretic use, requiring initiation of hemodialysis prior to chemotherapy. Antihyperuricemic therapy and hemodialysis were used to resolve hyperuricemia. However, due to multisystem organ dysfunction syndrome with extremely poor prognosis, the patient ultimately expired in the setting of a terminal ventilator wean. Although our patient did not meet current TLS criteria, she required hemodialysis due to uric acid nephropathy, a complication of TLS. This poses the clinical question of whether adequate diagnostic criteria exist for spontaneous TLS and if the lack of currently accepted guidelines has resulted in the underestimation of its incidence. Allopurinol and rasburicase are commonly used for prevention and treatment of TLS. Although both drugs decrease uric acid levels, allopurinol mechanistically prevents formation of the substrate rasburicase acts to solubilize. These drugs were administered together in our patient, although no established guidelines recommend combined use. This raises the clinical question of whether combined therapy is truly beneficial or, conversely, detrimental to patient outcomes.

10.
J Investig Med High Impact Case Rep ; 3(3): 2324709615607062, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26904704

RESUMEN

Context. As catecholamine elevation is a key element in the diagnosis of pheochromocytoma, more commonplace causes of sympathetic excess, such as obstructive sleep apnea (OSA), should be excluded as standard practice prior to diagnosis. This is essential to avoid misdiagnosis of adrenal incidentalomas identified in the estimated 42 million Americans with OSA, with greater than 4 million projected to undergo a computed tomography study annually. Case Description. A 56-year-old woman presented with a several year history of paroxysmal hypertension, palpitations, and diaphoresis. Abdominal/pelvic computed tomography performed during an unrelated hospitalization revealed a 2-cm left-sided adrenal nodule initially quantified at 37 Hounsfield units. Posthospitalization, 24-hour urine normetanephrine level was markedly elevated. Reassessment 2 weeks later revealed continued normetanephrine excess. Following normal thyroid function tests, morning cortisol, aldosterone, and plasma renin activity, laparoscopic adrenalectomy was performed. Surgical pathology identified an adrenal cortical adenoma. As paroxysms continued postoperatively, repeat 24-hour urine metanephrines were measured, demonstrating essentially unchanged normetanephrine elevation. Search for an alternate cause ensued, revealing OSA with progressive continuous positive airway pressure noncompliance over the preceding year. Regular continuous positive airway pressure therapy was resumed, and at the end of 7 weeks, 24-hour urine normetanephrine levels had declined. Conclusion. Pheochromocytomas are rare and sleep apnea is common. However, the overlap of clinical symptoms between these disorders is substantial, as is their ability to produce catecholamine excess. Thus, excluding uncontrolled or undiagnosed OSA in high-risk patients should be standard practice before diagnosing pheochromocytoma.

11.
J Vis Exp ; (88): e50374, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24998772

RESUMEN

Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The ß-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the ß-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on ß-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased ß-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3(H)]-thymidine incorporation, protein abundance, and mRNA expression.


Asunto(s)
Separación Celular/métodos , AMP Cíclico/análisis , Técnicas para Inmunoenzimas/métodos , Islotes Pancreáticos/química , Islotes Pancreáticos/citología , Animales , AMP Cíclico/metabolismo , Islotes Pancreáticos/metabolismo , Ratones
12.
Am J Physiol Endocrinol Metab ; 305(5): E600-10, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23860123

RESUMEN

Recently, a novel type 1 diabetes association locus was identified at human chromosome 6p31.3, and transcription factor 19 (TCF19) is a likely causal gene. Little is known about Tcf19, and we now show that it plays a role in both proliferation and apoptosis in insulinoma cells. Tcf19 is expressed in mouse and human islets, with increasing mRNA expression in nondiabetic obesity. The expression of Tcf19 is correlated with ß-cell mass expansion, suggesting that it may be a transcriptional regulator of ß-cell mass. Increasing proliferation and decreasing apoptotic cell death are two strategies to increase pancreatic ß-cell mass and prevent or delay diabetes. siRNA-mediated knockdown of Tcf19 in the INS-1 insulinoma cell line, a ß-cell model, results in a decrease in proliferation and an increase in apoptosis. There was a significant reduction in the expression of numerous cell cycle genes from the late G1 phase through the M phase, and cells were arrested at the G1/S checkpoint. We also observed increased apoptosis and susceptibility to endoplasmic reticulum (ER) stress after Tcf19 knockdown. There was a reduction in expression of genes important for the maintenance of ER homeostasis (Bip, p58(IPK), Edem1, and calreticulin) and an increase in proapoptotic genes (Bim, Bid, Nix, Gadd34, and Pdia2). Therefore, Tcf19 is necessary for both proliferation and survival and is a novel regulator of these pathways.


Asunto(s)
Ciclo Celular/fisiología , Diabetes Mellitus/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Secretoras de Insulina/metabolismo , Factores de Transcripción/metabolismo , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/fisiología , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/química , ARN/genética , ARN Interferente Pequeño/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
13.
J Biol Chem ; 287(24): 20344-55, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22457354

RESUMEN

Insufficient plasma insulin levels caused by deficits in both pancreatic ß-cell function and mass contribute to the pathogenesis of type 2 diabetes. This loss of insulin-producing capacity is termed ß-cell decompensation. Our work is focused on defining the role(s) of guanine nucleotide-binding protein (G protein) signaling pathways in regulating ß-cell decompensation. We have previously demonstrated that the α-subunit of the heterotrimeric G(z) protein, Gα(z), impairs insulin secretion by suppressing production of cAMP. Pancreatic islets from Gα(z)-null mice also exhibit constitutively increased cAMP production and augmented glucose-stimulated insulin secretion, suggesting that Gα(z) is a tonic inhibitor of adenylate cyclase, the enzyme responsible for the conversion of ATP to cAMP. In the present study, we show that mice genetically deficient for Gα(z) are protected from developing glucose intolerance when fed a high fat (45 kcal%) diet. In these mice, a robust increase in ß-cell proliferation is correlated with significantly increased ß-cell mass. Further, an endogenous Gα(z) signaling pathway, through circulating prostaglandin E activating the EP3 isoform of the E prostanoid receptor, appears to be up-regulated in insulin-resistant, glucose-intolerant mice. These results, along with those of our previous work, link signaling through Gα(z) to both major aspects of ß-cell decompensation: insufficient ß-cell function and mass.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Intolerancia a la Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula , AMP Cíclico/genética , AMP Cíclico/metabolismo , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Subunidades alfa de la Proteína de Unión al GTP/genética , Eliminación de Gen , Intolerancia a la Glucosa/inducido químicamente , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/patología , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/patología , Ratones , Ratones Mutantes , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
14.
J Biol Chem ; 285(21): 15777-85, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20339002

RESUMEN

Recent studies have implicated Epac2, a guanine-nucleotide exchange factor for the Rap subfamily of monomeric G proteins, as an important regulator of insulin secretion from pancreatic beta-cells. Although the Epac proteins were originally identified as cAMP-responsive activators of Rap1 GTPases, the role of Rap1 in beta-cell biology has not yet been defined. In this study, we examined the direct effects of Rap1 signaling on beta-cell biology. Using the Ins-1 rat insulinoma line, we demonstrate that activated Rap1A, but not related monomeric G proteins, promotes ribosomal protein S6 phosphorylation. Using isolated rat islets, we show that this signaling event is rapamycin-sensitive, indicating that it is mediated by the mammalian target of rapamycin complex 1-p70 S6 kinase pathway, a known growth regulatory pathway. This newly defined beta-cell signaling pathway acts downstream of cAMP, in parallel with the stimulation of cAMP-dependent protein kinase, to drive ribosomal protein S6 phosphorylation. Activated Rap1A promotes glucose-stimulated insulin secretion, islet cell hypertrophy, and islet cell proliferation, the latter exclusively through mammalian target of rapamycin complex 1, suggesting that Rap1 is an important regulator of beta-cell function. This newly defined signaling pathway may yield unique targets for the treatment of beta-cell dysfunction in diabetes.


Asunto(s)
Proliferación Celular , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Línea Celular Tumoral , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Glucosa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación/genética , Proteínas , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Proteínas de Unión al GTP rap1/genética
15.
J Biol Chem ; 283(8): 4560-7, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18096703

RESUMEN

Relatively little is known about the in vivo functions of the alpha subunit of the heterotrimeric G protein Gz (Galphaz). Clues to one potential function recently emerged with the finding that activation of Galphaz inhibits glucose-stimulated insulin secretion in an insulinoma cell line (Kimple, M. E., Nixon, A. B., Kelly, P., Bailey, C. L., Young, K. H., Fields, T. A., and Casey, P. J. (2005) J. Biol. Chem. 280, 31708-31713). To extend this study in vivo, a Galphaz knock-out mouse model was utilized to determine whether Galphaz function plays a role in the inhibition of insulin secretion. No differences were discovered in the gross morphology of the pancreatic islets or in the islet DNA, protein, or insulin content between Galphaz-null and wild-type mice. There was also no difference between the insulin sensitivity of Galphaz-null mice and wild-type controls, as measured by insulin tolerance tests. Galphaz-null mice did, however, display increased plasma insulin concentrations and a corresponding increase in glucose clearance following intraperitoneal and oral glucose challenge as compared with wild-type controls. The increased plasma insulin observed in Galphaz-null mice is most likely a direct result of enhanced insulin secretion, since pancreatic islets isolated from Galphaz-null mice exhibited significantly higher glucose-stimulated insulin secretion than those of wild-type mice. Finally, the increased insulin secretion observed in Galphaz-null islets appears to be due to the relief of a tonic inhibition of adenylyl cyclase, as cAMP production was significantly increased in Galphaz-null islets in the absence of exogenous stimulation. These findings indicate that Galphaz may be a potential new target for therapeutics aimed at ameliorating beta-cell dysfunction in Type 2 diabetes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Edulcorantes/farmacología , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , AMP Cíclico/genética , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP/genética , Glucosa/metabolismo , Resistencia a la Insulina/genética , Secreción de Insulina , Islotes Pancreáticos/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Edulcorantes/metabolismo
16.
J Biol Chem ; 280(36): 31708-13, 2005 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-16157560

RESUMEN

Glucose-stimulated insulin secretion and beta-cell growth are important facets of pancreatic islet beta-cell biology. As a result, factors that modulate these processes are of great interest for the potential treatment of Type 2 diabetes. Here, we present evidence that the heterotrimeric G protein G(z) and its effectors, including some previously thought to be confined in expression to neuronal cells, are present in pancreatic beta-cells, the largest cellular constituent of the islets of Langerhans. Furthermore, signaling pathways upon which G alpha(z) impacts are intact in beta-cells, and G alpha(z) activation inhibits both cAMP production and glucose-stimulated insulin secretion in the Ins-1(832/13) beta-cell-derived line. Inhibition of glucose-stimulated insulin secretion by prostaglandin E (PGE1) is pertussis-toxin insensitive, indicating that other G alpha(i) family members are not involved in this process in this beta-cell line. Indeed, overexpression of a selective deactivator of G alpha(z), the RGS domain of RGSZ1, blocks the inhibitory effect of PGE1 on glucose-stimulated insulin secretion. Finally, the inhibition of glucose-stimulated insulin secretion by PGE1 is substantially blunted by small interfering RNA-mediated knockdown of G alpha(z) expression. Taken together, these data strongly imply that the endogenous E prostanoid receptor in the Ins-1(832/13) beta-cell line couples to G(z) predominantly and perhaps even exclusively. These data provide the first evidence for G(z) signaling in pancreatic beta-cells, and identify an endogenous receptor-mediated signaling process in beta-cells that is dependent on G alpha(z) function.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/fisiología , Islotes Pancreáticos/fisiología , Animales , Línea Celular Tumoral , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Prostaglandina E/metabolismo , Subtipo EP1 de Receptores de Prostaglandina E , Proteínas de Unión al GTP rap1/metabolismo
17.
Mol Cell ; 19(2): 197-207, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-16039589

RESUMEN

Reversible phosphorylation is the cell's most prevalent form of posttranslational modification, yet its role in the regulation of mitochondrial functions is poorly understood. We have discovered that a member of the dual-specific protein tyrosine phosphatase (DS-PTP) family, PTPMT1 (PTP localized to the Mitochondrion 1) resides nearly exclusively in mitochondria. PTPMT1 is targeted to the mitochondrion by an N-terminal signal sequence and is found anchored to the matrix face of the inner membrane. Knockdown of PTPMT1 expression in the pancreatic insulinoma cell line INS-1 832/13 alters the mitochondrial phosphoprotein profile and markedly enhances both ATP production and insulin secretion. These data define PTPMT1 as a potential drug target for the treatment of type II diabetes and strengthen the notion that mitochondria are an underappreciated site of signaling by reversible phosphorylation.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mitocondrias/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Clonación Molecular , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/enzimología , Ratones , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA