Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nature ; 589(7840): 110-115, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239785

RESUMEN

In mammals, telomere protection is mediated by the essential protein TRF2, which binds chromosome ends and ensures genome integrity1,2. TRF2 depletion results in end-to-end chromosome fusions in all cell types that have been tested so far. Here we find that TRF2 is dispensable for the proliferation and survival of mouse embryonic stem (ES) cells. Trf2-/- (also known as Terf2) ES cells do not exhibit telomere fusions and can be expanded indefinitely. In response to the deletion of TRF2, ES cells exhibit a muted DNA damage response that is characterized by the recruitment of γH2AX-but not 53BP1-to telomeres. To define the mechanisms that control this unique DNA damage response in ES cells, we performed a CRISPR-Cas9-knockout screen. We found a strong dependency of TRF2-null ES cells on the telomere-associated protein POT1B and on the chromatin remodelling factor BRD2. Co-depletion of POT1B or BRD2 with TRF2 restores a canonical DNA damage response at telomeres, resulting in frequent telomere fusions. We found that TRF2 depletion in ES cells activates a totipotent-like two-cell-stage transcriptional program that includes high levels of ZSCAN4. We show that the upregulation of ZSCAN4 contributes to telomere protection in the absence of TRF2. Together, our results uncover a unique response to telomere deprotection during early development.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Células Madre Totipotentes/citología , Células Madre Totipotentes/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
2.
Dev Cell ; 29(3): 321-9, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24768164

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) integrates cues from growth factors and nutrients to control metabolism. In contrast to the growth factor input, genetic disruption of nutrient-dependent activation of mTORC1 in mammals remains unexplored. We engineered mice lacking RagA and RagB genes, which encode the GTPases responsible for mTORC1 activation by nutrients. RagB has limited expression, and its loss shows no effects on mammalian physiology. RagA deficiency leads to E10.5 embryonic death, loss of mTORC1 activity, and severe growth defects. Primary cells derived from these mice exhibit no regulation of mTORC1 by nutrients and maintain high sensitivity to growth factors. Deletion of RagA in adult mice is lethal. Upon RagA loss, a myeloid population expands in peripheral tissues. RagA-specific deletion in liver increases cellular responses to growth factors. These results show the essentiality of nutrient sensing for mTORC1 activity in mice and its suppression of PI3K/Akt signaling.


Asunto(s)
Embrión de Mamíferos/embriología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Hepatocitos/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
3.
J Immunol ; 190(2): 695-702, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23241879

RESUMEN

Recognition of nucleic acids by TLR9 requires its trafficking from the endoplasmic reticulum to endolysosomal compartments and its subsequent proteolytic processing. Both processes depend on interactions of TLR9 with the polytopic endoplasmic reticulum-resident protein UNC93B1. To examine the intracellular behavior of TLR9 in primary APCs, we generated transgenic mice expressing a TLR9-GFP fusion. The TLR9-GFP transgene is functional and is proteolytically processed in resting bone marrow-derived macrophages (BMDMs), dendritic cells, and B cells. Inhibition of cleavage impairs TLR9-dependent responses in all primary APCs analyzed. The kinetics of TLR9-GFP processing in BMDMs and B cells differs: in B cells, proteolysis occurs at a faster rate, consistent with an almost exclusive localization to endolysosomes at the resting state. In contrast to the joint requirement for cathepsins L and S for TLR9 cleavage in macrophages, TLR9-GFP cleavage depends on cathepsin L activity in B cells. As expected, in BMDMs and B cells from UNC93B1 (3d) mutant mice, cleavage of TLR9-GFP is essentially blocked, and the expression level of UNC93B1 appears tightly correlated with TLR9-GFP cleavage. We conclude that proteolysis is a universal requirement for TLR9 activation in the primary cell types tested, however the cathepsin requirement, rate of cleavage, and intracellular behavior of TLR9 varies. The observed differences in trafficking indicate the possibility of distinct modes of endosomal content sampling to facilitate initiation of TLR-driven responses in APCs.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Animales , Linfocitos B/metabolismo , Células de la Médula Ósea/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lisosomas/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Transducción de Señal , Transgenes
4.
Cell Rep ; 1(5): 461-71, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22832272

RESUMEN

To study the CD8(+) T cell response against a mouse γ-herpes virus, we generated K(b)-MHV-68-ORF8(604-612)RAG(-/-) CD8(+) T cell receptor transnuclear (TN) mice as a source of virus-specific CD8(+) T cells. K(b)-ORF8-Tet(+) CD8(+) T cells, expanded in the course of a resolving MHV-68 infection, served as a source of nucleus donors. Various in vivo and ex vivo assay criteria demonstrated the fine specificity and functionality of TN cells. TN cells proliferated extensively in response to viral infection, helped control viral burden, and exhibited a phenotype similar to that of endogenous K(b)-ORF8-Tet(+) cells. When compared to OT-1 cells, TN cells displayed distinct properties in response to lymphopenia and cognate antigen stimulation, which may be attributable to the affinity of the TCR expressed by the TN cells. The availability of MHV-68-specific CD8(+) TCR TN mice provides a new tool for investigating aspects of host-pathogen interactions unique to γ-herpes viruses.


Asunto(s)
Linfocitos T CD8-positivos/patología , Epítopos/metabolismo , Glicoproteínas/metabolismo , Antígenos H-2/metabolismo , Infecciones por Herpesviridae/fisiopatología , Receptores de Antígenos de Linfocitos T/metabolismo , Rhadinovirus/metabolismo , Proteínas Virales/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/prevención & control , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Fenotipo , Infecciones Tumorales por Virus/metabolismo , Infecciones Tumorales por Virus/fisiopatología , Infecciones Tumorales por Virus/prevención & control , Carga Viral/fisiología
5.
Stem Cells ; 29(6): 992-1000, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21563275

RESUMEN

Pluripotent cells can be derived from different types of somatic cells by nuclear reprogramming through the ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc. However, it is unclear whether postmitotic neurons are susceptible to direct reprogramming. Here, we show that postnatal cortical neurons, the vast majority of which are postmitotic, are amenable to epigenetic reprogramming. However, ectopic expression of the four canonical reprogramming factors is not sufficient to reprogram postnatal neurons. Efficient reprogramming was only achieved after forced cell proliferation by p53 suppression. Additionally, overexpression of repressor element-1 silencing transcription, a suppressor of neuronal gene activity, increased reprogramming efficiencies in combination with the reprogramming factors. Our findings indicate that terminally differentiated postnatal neurons are able to acquire the pluripotent state by direct epigenetic reprogramming, and this process is made more efficient through the suppression of lineage specific gene expression.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Neuronas/citología , Proteínas Represoras/metabolismo , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Blastocisto/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Transferencia de Embrión , Fibroblastos/citología , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Factor 4 Similar a Kruppel , Antígeno Lewis X/metabolismo , Ratones , Proteína Homeótica Nanog , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Regiones Promotoras Genéticas , Teratoma/patología , Quimera por Trasplante
6.
PLoS Genet ; 7(5): e1002054, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21573140

RESUMEN

MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.


Asunto(s)
Células Madre Embrionarias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Secuencia de Bases , Caspasa 2/genética , Caspasa 2/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Doxorrubicina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/efectos de la radiación , Rayos gamma , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transducción de Señal
7.
PLoS Biol ; 8(3): e1000605, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21468303

RESUMEN

Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.


Asunto(s)
Herpesvirus Humano 4/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal , Ubiquitina/metabolismo , Proteínas Virales/metabolismo , Biocatálisis , Línea Celular , Retículo Endoplásmico/metabolismo , Glicoproteínas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Especificidad por Sustrato
8.
Cell ; 144(5): 782-95, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376238

RESUMEN

During development and regeneration, proliferation of tissue-specific stem cells is tightly controlled to produce organs of a predetermined size. The molecular determinants of this process remain poorly understood. Here, we investigate the function of Yap1, the transcriptional effector of the Hippo signaling pathway, in skin biology. Using gain- and loss-of-function studies, we show that Yap1 is a critical modulator of epidermal stem cell proliferation and tissue expansion. Yap1 mediates this effect through interaction with TEAD transcription factors. Additionally, our studies reveal that α-catenin, a molecule previously implicated in tumor suppression and cell density sensing in the skin, is an upstream negative regulator of Yap1. α-catenin controls Yap1 activity and phosphorylation by modulating its interaction with 14-3-3 and the PP2A phosphatase. Together, these data identify Yap1 as a determinant of the proliferative capacity of epidermal stem cells and as an important effector of a "crowd control" molecular circuitry in mammalian skin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Células Epidérmicas , Fosfoproteínas/metabolismo , alfa Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Epidermis/metabolismo , Ratones , Proteínas Señalizadoras YAP
9.
J Vis Exp ; (43)2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20972401

RESUMEN

Lymphocytes, such as T cells, undergo genetic V(D)J recombination, to generate a receptor with a certain specificity. Mice transgenic for a rearranged antigen-specific T cell receptor (TCR) have been an indispensable tool to study T cell development and function. However, such TCRs are usually isolated from the relevant T cells after long-term culture often following repeated antigen stimulation, which unavoidably selects for T cells with high affinity. Random genomic integration of the TCR α- and ß-chain and expression from non-endogenous promoters can lead to variations in expression level and kinetics. Epigenetic reprogramming via somatic cell nuclear transfer provides a tool to generate embryonic stem cells and mice from any cell of interest. Consequently, when SCNT is applied to T cells of known specificity, these genetic V(D)J rearrangements are transferred to the SCNT-embryonic stem cells (ESCs) and the mice derived from them, while epigenetic marks are reset. We have demonstrated that T cells with pre-defined specificities against Toxoplasma gondii can be used to generate mouse models that express the specific TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.


Asunto(s)
Células Madre Embrionarias/inmunología , Técnicas de Transferencia Nuclear , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Toxoplasma/inmunología , Animales , Epítopos de Linfocito T/inmunología , Femenino , Ratones
10.
Science ; 328(5975): 243-8, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20378817

RESUMEN

Mice that are transgenic for rearranged antigen-specific T cell receptors (TCRs) are essential tools to study T cell development and function. Such TCRs are usually isolated from the relevant T cells after long-term culture, often after repeated antigen stimulation, which unavoidably skews the T cell population used. Random genomic integration of the TCR alpha and beta chain and expression from nonendogenous promoters represent additional drawbacks of transgenics. Using epigenetic reprogramming via somatic cell nuclear transfer, we demonstrated that T cells with predefined specificities against Toxoplasma gondii can be used to generate mouse models that express the TCR from their endogenous loci, without experimentally introduced genetic modification. The relative ease and speed with which such transnuclear models can be obtained holds promise for the construction of other disease models.


Asunto(s)
Antígenos de Protozoos/inmunología , Ratones Transgénicos , Técnicas de Transferencia Nuclear , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Toxoplasma/inmunología , Toxoplasmosis Animal/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Células Madre Embrionarias , Epítopos de Linfocito T , Femenino , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética
11.
Nat Methods ; 6(2): 147-52, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122668

RESUMEN

Cell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step is the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields. We present here a microfluidic device to trap and properly pair thousands of cells. Using this device, we paired different cell types, including fibroblasts, mouse embryonic stem cells and myeloma cells, achieving pairing efficiencies up to 70%. The device is compatible with both chemical and electrical fusion protocols. We observed that electrical fusion was more efficient than chemical fusion, with membrane reorganization efficiencies of up to 89%. We achieved greater than 50% properly paired and fused cells over the entire device, fivefold greater than with a commercial electrofusion chamber and observed reprogramming in hybrids between mouse embryonic stem cells and mouse embryonic fibroblasts.


Asunto(s)
Fusión Celular/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Línea Celular Tumoral , Electroporación/métodos , Células Madre Embrionarias , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Técnicas Analíticas Microfluídicas/métodos , Células 3T3 NIH , Polietilenglicoles/farmacología
12.
Stem Cells ; 26(6): 1628-35, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18369099

RESUMEN

Successful hematopoietic stem cell (HSC) transplantation is often limited by the numbers of HSCs, and robust methods to expand HSCs ex vivo are needed. We previously showed that angiopoietin-like proteins (Angptls), a group of growth factors isolated from a fetal liver HSC-supportive cell population, improved ex vivo expansion of HSCs. Here, we demonstrate that insulin-like growth factor-binding protein 2 (IGFBP2), secreted by a tumorigenic cell line, also enhanced ex vivo expansion of mouse HSCs. On the basis of these findings, we established a completely defined, serum-free culture system for mouse HSCs, containing SCF, thrombopoietin, fibroblast growth factor 1, Angptl3, and IGFBP2. As measured by competitive repopulation analyses, there was a 48-fold increase in numbers of long-term repopulating mouse HSCs after 21 days of culture. This is the first demonstration that IGFBP2 stimulates expansion or proliferation of murine stem cells. Our finding also suggests that certain cancer cells synthesize proteins that can stimulate HSC expansion. Disclosure of potential conflicts of interest is found at the end of this article.


Asunto(s)
Células Madre Hematopoyéticas/citología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/farmacología , Expansión de Tejido/métodos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Línea Celular , Línea Celular Tumoral , Medios de Cultivo Condicionados , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Riñón , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección
13.
Cell Stem Cell ; 1(3): 346-52, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-18371368

RESUMEN

Parthenogenesis and somatic cell nuclear transfer (SCNT) are two methods for deriving embryonic stem (ES) cells that are genetically matched to the oocyte donor or somatic cell donor, respectively. Using genome-wide single nucleotide polymorphism (SNP) analysis, we demonstrate distinct signatures of genetic recombination that distinguish parthenogenetic ES cells from those generated by SCNT. We applied SNP analysis to the human ES cell line SCNT-hES-1, previously claimed to have been derived by SCNT, and present evidence that it represents a human parthenogenetic ES cell line. Genome-wide SNP analysis represents a means to validate the genetic provenance of an ES cell line.


Asunto(s)
Células Madre Embrionarias/metabolismo , Técnicas de Transferencia Nuclear , Partenogénesis , Recombinación Genética/genética , Animales , Línea Celular , Análisis Citogenético , Metilación de ADN , Genoma Humano/genética , Heterocigoto , Homocigoto , Humanos , Ratones , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Manejo de Especímenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA