Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biochemistry ; 52(38): 6633-45, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24032747

RESUMEN

Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with the deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here, we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism and resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties, and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S](2+) and [4Fe-4S](2+) clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for the maturation of chloroplastic Fe-S proteins via intact, rapid, and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S](2+) cluster donor for glutaredoxin S16 but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S](2+) cluster donor for adenosine 5'-phosphosulfate reductase (APR1), and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2 but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation, which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters.


Asunto(s)
Proteínas de Arabidopsis/química , Cloroplastos/metabolismo , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Endonucleasas/metabolismo , Glutarredoxinas/metabolismo , Proteínas Hierro-Azufre/química , Espectrofotometría Ultravioleta , Espectrometría Raman
2.
Biochim Biophys Acta ; 1824(2): 392-403, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155275

RESUMEN

The arsenate reductase from the cyanobacterium Synechocystis sp. PCC 6803 has been characterized in terms of the redox properties of its cysteine residues and their role in the reaction catalyzed by the enzyme. Of the five cysteines present in the enzyme, two (Cys13 and Cys35) have been shown not to be required for catalysis, while Cys8, Cys80 and Cys82 have been shown to be essential. The as-isolated enzyme contains a single disulfide, formed between Cys80 and Cys82, with an oxidation-reduction midpoint potential (E(m)) value of -165mV at pH 7.0. It has been shown that Cys15 is the only one of the four cysteines present in Synechocystis sp. PCC 6803 glutaredoxin A required for its ability to serve as an electron donor to arsenate reductase, while the other three cysteines (Cys18, Cys36 and Cys70) play no role. Glutaredoxin A has been shown to contain a single redox-active disulfide/dithiol couple, with a two-electron, E(m) value of -220mV at pH 7.0. One cysteine in this disulfide/dithiol couple has been shown to undergo glutathionylation. An X-ray crystal structure, at 1.8Å resolution, has been obtained for glutaredoxin A. The probable orientations of arsenate reductase disulfide bonds present in the resting enzyme and in a likely reaction intermediate of the enzyme have been examined by in silico modeling, as has the surface environment of arsenate reductase in the vicinity of Cys8, the likely site for the initial reaction between arsenate and the enzyme.


Asunto(s)
Arseniato Reductasas/química , Proteínas Bacterianas/química , Glutarredoxinas/química , Synechocystis/enzimología , Arseniato Reductasas/genética , Arseniatos/metabolismo , Biocatálisis , Clonación Molecular , Cisteína/química , Glutatión/química , Datos de Secuencia Molecular , Oxidación-Reducción , Homología de Secuencia de Aminoácido
3.
Biochim Biophys Acta ; 1804(12): 2213-21, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20849982

RESUMEN

AtTDX is an enzyme present in Arabidopsis thaliana which is composed of two domains, a thioredoxin (Trx)-motif containing domain and a tetratricopeptide (TPR)-repeat domain. This enzyme has been shown to function as both a thioredoxin and a chaperone. The midpoint potential (E(m)) of AtTDX was determined by redox titrations using the thiol-specific modifiers, monobromobimane (mBBr) and mal-PEG. A NADPH/Trx reductase (NTR) system was used both to validate these E(m) determination methods and to demonstrate that AtTDX is an electron-accepting substrate for NTR. Titrations of full-length AtTDX revealed the presence of a single two-electron couple with an E(m) value of approximately -260 mV at pH 7.0. The two cysteines present in a typical, conserved Trx active site (WCGPC), which are likely to play a role in the electron transfer processes catalyzed by AtTDX, have been replaced by serines by site-directed mutagenesis. These replacements (i.e., C304S, C307S, and C304S/C307S) resulted in a complete loss of the redox process detected using either the mBBr or mal-PEG method to monitor disulfide/dithiol redox couples. This result supports the conclusion that the couple with an E(m) value of -260 mV is a disulfide/dithiol couple involving Cys304 and Cys307. Redox titrations for the separately-expressed Trx-motif containing C-domain also revealed the presence of a single two-electron couple with an E(m) value of approximately -260 mV at 20°C. The fact that these two E(m) values are identical, provides additional support for assignment of the redox couple to a disulfide/dithiol involving C304 and C307. It was found that, while the disulfide/dithiol redox chemistry of AtTDX was not affected by increasing the temperature to 40°C, no redox transitions were observed at 50°C and higher temperatures. In contrast, Escherichia coli thioredoxin was shown to remain redox-active at temperatures as high as 60°C. The temperature-dependence of the AtTDX redox titration is similar to that observed for the redox activity of the protein in enzymatic assays.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Tiorredoxinas/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Dicroismo Circular , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Serina/metabolismo , Especificidad por Sustrato , Temperatura , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tolueno/análogos & derivados , Tolueno/metabolismo
4.
J Biol Chem ; 284(45): 31181-9, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19744922

RESUMEN

NMR spectroscopy has been used to map the interaction domain on Escherichia coli thioredoxin for the thioredoxin- dependent 5'-adenylylsulfate reductase from Pseudomonas aeruginosa (PaAPR). Seventeen thioredoxin amino acids, all clustered around Cys-32 (the more surface-exposed of the two active-site cysteines), have been located at the PaAPR binding site. The center of the binding domain is dominated by nonpolar amino acids, with a smaller number of charged and polar amino acids located on the periphery of the site. Twelve of the amino acids detected by NMR have non-polar, hydrophobic side chains, including one aromatic amino acid (Trp-31). Four of the thioredoxin amino acids at the PaAPR binding site have polar side chains (Lys-36, Asp-61, Gln-62 and Arg-73), with three of the four having charged side chains. Site-directed mutagenesis experiments have shown that replacement of Lys-36, Asp-61, and Arg-73 and of the absolutely conserved Trp-31 significantly decreases the V(max) for the PaAPR-catalyzed reduction of 5'-adenylylsulfate, with E. coli thioredoxin serving as the electron donor. The most dramatic effect was observed with the W31A variant, which showed no activity as a donor to PaAPR. Although the thiol of the active-site Cys-256 of PaAPR is the point of the initial nucleophilic attack by reduced thioredoxin, mutagenic replacement of Cys-256 by serine has no effect on thioredoxin binding to PaAPR.


Asunto(s)
Escherichia coli/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Pseudomonas aeruginosa/enzimología , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Unión Proteica , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Homología de Secuencia de Aminoácido , Tiorredoxinas/genética
5.
Plant Physiol ; 148(1): 424-35, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18614707

RESUMEN

Thioredoxins (Trxs) constitute a family of small proteins in plants. This family has been extensively characterized in Arabidopsis (Arabidopsis thaliana), which contains six different Trx types: f, m, x, and y in chloroplasts, o in mitochondria, and h mainly in cytosol. A detailed study of this family in the model legume Medicago truncatula, realized here, has established the existence of two isoforms that do not belong to any of the types previously described. As no possible orthologs were further found in either rice (Oryza sativa) or poplar (Populus spp.), these novel isoforms may be specific for legumes. Nevertheless, on the basis of protein sequence and gene structure, they are both related to Trxs m and probably have evolved from Trxs m after the divergence of the higher plant families. They have redox potential values similar to those of the classical Trxs, and one of them can act as a substrate for the M. truncatula NADP-Trx reductase A. However, they differ from classical Trxs in that they possess an atypical putative catalytic site and lack disulfide reductase activity with insulin. Another important feature is the presence in both proteins of an N-terminal extension containing a putative signal peptide that targets them to the endoplasmic reticulum, as demonstrated by their transient expression in fusion with the green fluorescent protein in M. truncatula or Nicotiana benthamiana leaves. According to their pattern of expression, these novel isoforms function specifically in symbiotic interactions in legumes. They were therefore given the name of Trxs s, s for symbiosis.


Asunto(s)
Medicago truncatula/fisiología , Simbiosis , Tiorredoxinas/fisiología , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Isoformas de Proteínas , Conejos , Reductasa de Tiorredoxina-Disulfuro/metabolismo
6.
J Biol Chem ; 283(34): 23062-72, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18552403

RESUMEN

Unlike other thioredoxins h characterized so far, a poplar thioredoxin of the h type, PtTrxh4, is reduced by glutathione and glutaredoxin (Grx) but not NADPH:thioredoxin reductase (NTR). PtTrxh4 contains three cysteines: one localized in an N-terminal extension (Cys(4)) and two (Cys(58) and Cys(61)) in the classical thioredoxin active site ((57)WCGPC(61)). The property of a mutant in which Cys(58) was replaced by serine demonstrates that it is responsible for the initial nucleophilic attack during the catalytic cycle. The observation that the C4S mutant is inactive in the presence of Grx but fully active when dithiothreitol is used as a reductant indicates that Cys(4) is required for the regeneration of PtTrxh4 by Grx. Biochemical and x-ray crystallographic studies indicate that two intramolecular disulfide bonds involving Cys(58) can be formed, linking it to either Cys(61) or Cys(4). We propose thus a four-step disulfide cascade mechanism involving the transient glutathionylation of Cys(4) to convert this atypical thioredoxin h back to its active reduced form.


Asunto(s)
Cisteína/química , Glutarredoxinas/química , Tiorredoxinas/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Clonación Molecular , Cristalografía por Rayos X , Ditiotreitol/química , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/química , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Ionización de Electrospray , Reductasa de Tiorredoxina-Disulfuro/química , Tiorredoxinas/metabolismo
7.
EMBO J ; 26(23): 4801-11, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-17972915

RESUMEN

Erv1 is a flavin-dependent sulfhydryl oxidase in the mitochondrial intermembrane space (IMS) that functions in the import of cysteine-rich proteins. Redox titrations of recombinant Erv1 showed that it contains three distinct couples with midpoint potentials of -320, -215, and -150 mV. Like all redox-active enzymes, Erv1 requires one or more electron acceptors. We have generated strains with erv1 conditional alleles and employed biochemical and genetic strategies to facilitate identifying redox pathways involving Erv1. Here, we report that Erv1 forms a 1:1 complex with cytochrome c and a reduced Erv1 can transfer electrons directly to the ferric form of the cytochrome. Erv1 also utilized molecular oxygen as an electron acceptor to generate hydrogen peroxide, which is subsequently reduced to water by cytochrome c peroxidase (Ccp1). Oxidized Ccp1 was in turn reduced by the Erv1-reduced cytochrome c. By coupling these pathways, cytochrome c and Ccp1 function efficiently as Erv1-dependent electron acceptors. Thus, we propose that Erv1 utilizes diverse pathways for electron shuttling in the IMS.


Asunto(s)
Citocromo-c Peroxidasa/fisiología , Citocromos c/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Alelos , Bioquímica/métodos , Electrones , Peróxido de Hidrógeno/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Biológicos , Modelos Genéticos , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Oxígeno/química , Oxígeno/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
8.
Proc Natl Acad Sci U S A ; 104(18): 7379-84, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17460036

RESUMEN

When expressed in Escherichia coli, cytosolic poplar glutaredoxin C1 (CGYC active site) exists as a dimeric iron-sulfur-containing holoprotein or as a monomeric apoprotein in solution. Analytical and spectroscopic studies of wild-type protein and site-directed variants and structural characterization of the holoprotein by using x-ray crystallography indicate that the holoprotein contains a subunit-bridging [2Fe-2S] cluster that is ligated by the catalytic cysteines of two glutaredoxins and the cysteines of two glutathiones. Mutagenesis data on a variety of poplar glutaredoxins suggest that the incorporation of an iron-sulfur cluster could be a general feature of plant glutaredoxins possessing a glycine adjacent to the catalytic cysteine. In light of these results, the possible involvement of plant glutaredoxins in oxidative stress sensing or iron-sulfur biosynthesis is discussed with respect to their intracellular localization.


Asunto(s)
Glutatión/química , Glutatión/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Populus/metabolismo , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutarredoxinas , Hierro/metabolismo , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidorreductasas/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Análisis Espectral , Azufre/metabolismo , Nicotiana
9.
Biochemistry ; 46(2): 591-601, 2007 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-17209569

RESUMEN

5'-Adenylylsulfate (APS) reductase from Enteromorpha intestinalis (EiAPR) is composed of two domains that function together to reduce APS to sulfite. The carboxyl-terminal domain functions as a glutaredoxin that mediates the transfer of electrons from glutathione to the APS reduction site on the amino-terminal domain. To study the basis for the interdomain interaction, a heterologous system was constructed in which the C domain of EiAPR was fused to the carboxyl terminus of the APS reductase from Pseudomonas aeruginosa (PaAPR), an enzyme that normally uses thioredoxin as an electron donor and is incapable of using glutathione for this function. The hybrid enzyme, which retains the [4Fe-4S] cluster from PaAPR, was found to use both thioredoxin and glutathione as an electron donor for APS reduction. The ability to use glutathione was enhanced by the addition of Na2SO4 to the reaction buffer, a property that the hybrid enzyme shares with EiAPR. When the C domain was added as a separate component, it was much less efficient in conferring PaAPR with the ability to use glutathione as an electron donor, despite the fact that the separately expressed C domain functioned in two activities that are typical for glutaredoxins, hydroxyethyl disulfide reduction and electron donation to ribonucleotide reductase. These results suggest that the physical connection of the reductase and C domain on a single polypeptide is critical for the electron-transfer reaction. Moreover, the effect of Na2SO4 suggests that a water-ordering component of the reaction milieu is critical for the catalytic function of plant-type APS reductases by promoting the interdomain interaction.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Ulva/enzimología , Proteínas Algáceas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN de Algas/genética , ADN Bacteriano/genética , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Espectrofotometría , Ulva/genética
10.
Plant Physiol ; 142(4): 1364-79, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17071643

RESUMEN

We provide here an exhaustive overview of the glutathione (GSH) peroxidase (Gpx) family of poplar (Populus trichocarpa). Although these proteins were initially defined as GSH dependent, in fact they use only reduced thioredoxin (Trx) for their regeneration and do not react with GSH or glutaredoxin, constituting a fifth class of peroxiredoxins. The two chloroplastic Gpxs display a marked selectivity toward their electron donors, being exclusively specific for Trxs of the y type for their reduction. In contrast, poplar Gpxs are much less specific with regard to their electron-accepting substrates, reducing hydrogen peroxide and more complex hydroperoxides equally well. Site-directed mutagenesis indicates that the catalytic mechanism and the Trx-mediated recycling process involve only two (cysteine [Cys]-107 and Cys-155) of the three conserved Cys, which form a disulfide bridge with an oxidation-redox midpoint potential of -295 mV. The reduction/formation of this disulfide is detected both by a shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by measuring the intrinsic tryptophan fluorescence of the protein. The six genes identified coding for Gpxs are expressed in various poplar organs, and two of them are localized in the chloroplast, with one colocalizing in mitochondria, suggesting a broad distribution of Gpxs in plant cells. The abundance of some Gpxs is modified in plants subjected to environmental constraints, generally increasing during fungal infection, water deficit, and metal stress, and decreasing during photooxidative stress, showing that Gpx proteins are involved in the response to both biotic and abiotic stress conditions.


Asunto(s)
Glutatión Peroxidasa/fisiología , Proteínas de Plantas/fisiología , Populus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Glutatión Peroxidasa/análisis , Glutatión Peroxidasa/química , Proteínas Fluorescentes Verdes/análisis , Datos de Secuencia Molecular , Oxidación-Reducción , Estrés Oxidativo , Peróxidos/metabolismo , Filogenia , Proteínas de Plantas/análisis , Proteínas de Plantas/química , Populus/química , Populus/genética , Isoformas de Proteínas/análisis , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Proteínas Recombinantes de Fusión/análisis , Alineación de Secuencia , Especificidad por Sustrato , Tiorredoxinas/metabolismo
11.
Biochemistry ; 45(15): 5010-8, 2006 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-16605269

RESUMEN

The 5'-adenylyl sulfate (APS) reductase from the marine macrophytic green alga Enteromorpha intestinalis uses reduced glutathione as the electron donor for the reduction of APS to 5'-AMP and sulfite. The E. intestinalis enzyme (EiAPR) is composed of a reductase domain and a glutaredoxin-like C-terminal domain. The enzyme contains a single [4Fe-4S] cluster as its sole prosthetic group. Three of the enzyme's eight cysteine residues (Cys166, Cys257, and Cys260) serve as ligands to the iron-sulfur cluster. Site-directed mutagenesis experiments and resonance Raman spectroscopy are consistent with the presence of a cluster in which only three of the four ligands to the cluster irons contributed by the protein are cysteine residues. Site-directed mutagenesis experiments suggest that the thiol group of Cys250, a residue found only in algal APS reductases, is not an absolute requirement for activity. The other four cysteines that do not serve as cluster ligands, all of which are required for activity, are involved in the formation of two redox-active disulfide/dithiol couples. The couple involving Cys342 and Cys345 has an E(m) value at pH 7.0 of -140 mV, and the one involving Cys165 and Cys285 has an E(m) value at pH 7.0 of -290 mV. The C-terminal portion of EiAPR, expressed separately, exhibits the cystine reductase activity characteristic of glutaredoxins. It is proposed that the Cys342-Cys345 disulfide provides the site for entry of electrons from reduced glutathione and that the Cys166-Cys285 disulfide may serve as a structural element that is essential for keeping the enzyme in the catalytically active conformation.


Asunto(s)
Chlorophyta/química , Cisteína/química , Proteínas Hierro-Azufre/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Secuencia de Aminoácidos , Catálisis , Chlorophyta/enzimología , Chlorophyta/metabolismo , Cisteína/metabolismo , Activación Enzimática , Proteínas Hierro-Azufre/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Estructura Terciaria de Proteína , Alineación de Secuencia , Espectrometría Raman
12.
Biochemistry ; 44(49): 16054-63, 2005 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-16331965

RESUMEN

The structure of nitrite reductase, a key enzyme in the process of nitrogen assimilation, has been determined using X-ray diffraction to a resolution limit of 2.8 A. The protein has a globular fold consisting of 3 alpha/beta domains with the siroheme-iron sulfur cofactor at the interface of the three domains. The Fe(4)S(4) cluster is coordinated by cysteines 441, 447, 482, and 486. The siroheme is located at a distance of 4.2 A from the cluster, and the central iron atom is coordinated to Cys 486. The siroheme is surrounded by several ionizable amino acid residues that facilitate the binding and subsequent reduction of nitrite. A model for the ferredoxin:nitrite reductase complex is proposed in which the binding of ferredoxin to a positively charged region of nitrite reductase results in elimination of exposure of the cofactors to the solvent. The structure of nitrite reductase shows a broad similarity to the hemoprotein subunit of sulfite reductase but has many significant differences in the backbone positions that could reflect sequence differences or could arise from alterations of the sulfite reductase structure that arise from the isolation of this subunit from the native complex. The implications of the nitrite reductase structure for understanding multi-electron processes are discussed in terms of differences in the protein environments of the cofactors.


Asunto(s)
Coenzimas/química , Hemo/análogos & derivados , Proteínas Hierro-Azufre/química , Nitrito Reductasas/química , Estructura Terciaria de Proteína , Spinacia oleracea/enzimología , Cristalografía por Rayos X , Ferredoxinas/química , Hemo/química , Hemo/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo
13.
Biochim Biophys Acta ; 1710(2-3): 103-12, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16289027

RESUMEN

APS reductase from Pseudomonas aeruginosa has been shown to form a disulfide-linked adduct with mono-cysteine variants of Escherichia coli thioredoxin and Chlamydomonas reinhardtii thioredoxin h1. These adducts presumably represent trapped versions of the intermediates formed during the catalytic cycle of this thioredoxin-dependent enzyme. The oxidation-reduction midpoint potential of the disulfide bond in the P. aeruginosa APS reductase/C. reinhardtii thioredoxin h1 adduct is -280 mV. Site-directed mutagenesis and mass spectrometry have identified Cys256 as the P. aeruginosa APS reductase residue that forms a disulfide bond with Cys36 of C. reinhardtii TRX h1 and Cys32 of E. coli thioredoxin in these adducts. Spectral perturbation measurements indicate that P. aeruginosa APS reductase can also form a non-covalent complex with E. coli thioredoxin and with C. reinhardtii thioredoxin h1. Perturbation of the resonance Raman and visible-region absorbance spectra of the APS reductase [4Fe-4S] center by either APS or the competitive inhibitor 5'-AMP indicates that both the substrate and product bind in close proximity to the cluster. These results have been interpreted in terms of a scheme in which one of the redox-active cysteine residues serves as the initial reductant for APS bound at or in close proximity to the [4Fe-4S] cluster.


Asunto(s)
Cisteína/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Pseudomonas aeruginosa/enzimología , Tiorredoxinas/química , Adenosina Fosfosulfato/metabolismo , Cisteína/genética , Disulfuros/química , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Espectrometría Raman , Especificidad por Sustrato , Tiorredoxina h
14.
Plant Physiol ; 137(2): 514-21, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15579663

RESUMEN

The determinants of the thioredoxin (TRX)-dependent redox regulation of the chloroplastic NADP-malate dehydrogenase (NADP-MDH) from the eukaryotic green alga Chlamydomonas reinhardtii have been investigated using site-directed mutagenesis. The results indicate that a single C-terminal disulfide is responsible for this regulation. The redox midpoint potential of this disulfide is less negative than that of the higher plant enzyme. The regulation is of an all-or-nothing type, lacking the fine-tuning provided by the second N-terminal disulfide found only in NADP-MDH from higher plants. The decreased stability of specific cysteine/alanine mutants is consistent with the presence of a structural disulfide formed by two cysteine residues that are not involved in regulation of activity. Measurements of the ability of C. reinhardtii thioredoxin f (TRX f) to activate wild-type and site-directed mutants of sorghum (Sorghum vulgare) NADP-MDH suggest that the algal TRX f has a redox midpoint potential that is less negative than most those of higher plant TRXs f. These results are discussed from an evolutionary point of view.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Malato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Estabilidad de Enzimas , Expresión Génica , Malato Deshidrogenasa/química , Malato-Deshidrogenasa (NADP+) , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Conformación Proteica , Factores de Tiempo
15.
Plant Physiol ; 136(4): 4088-95, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15531707

RESUMEN

The plant plastidial thioredoxins (Trx) are involved in the light-dependent regulation of many enzymatic activities, owing to their thiol-disulfide interchange activity. Three different types of plastidial Trx have been identified and characterized so far: the m-, f-, and x-types. Recently, a new putative plastidial type, the y-type, was found. In this work the two isoforms of Trx y encoded by the nuclear genome of Arabidopsis (Arabidopsis thaliana) were characterized. The plastidial targeting of Trx y has been established by the expression of a TrxGFP fusion protein. Then both isoforms were produced as recombinant proteins in their putative mature forms and purified to characterize them by a biochemical approach. Their ability to activate two plastidial light-regulated enzymes, NADP-malate dehydrogenase (NADP-MDH) and fructose-1,6-bisphosphatase, was tested. Both Trx y were poor activators of fructose-1,6-bisphosphatase and NADP-MDH; however, a detailed study of the activation of NADP-MDH using site-directed mutants of its regulatory cysteines suggested that Trx y was able to reduce the less negative regulatory disulfide but not the more negative regulatory disulfide. This property probably results from the fact that Trx y has a less negative redox midpoint potential (-337 mV at pH 7.9) than thioredoxins f and m. The y-type Trxs were also the best substrate for the plastidial peroxiredoxin Q. Gene expression analysis showed that Trx y2 was mainly expressed in leaves and induced by light, whereas Trx y1 was mainly expressed in nonphotosynthetic organs, especially in seeds at a stage of major accumulation of storage lipids.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Arabidopsis/análisis , Activación Enzimática , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malato Deshidrogenasa/metabolismo , Malato-Deshidrogenasa (NADP+) , Oxidación-Reducción , Estrés Oxidativo/fisiología , Plastidios/química , Isoformas de Proteínas/metabolismo , Tiorredoxinas/análisis , Factores de Tiempo
16.
Biochemistry ; 43(42): 13478-86, 2004 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-15491155

RESUMEN

APS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species. This conclusion is supported by resonance Raman and electron paramagnetic resonance (EPR) evidence for near stoichiometric conversion of the cluster to a [3Fe-4S](+) form by treatment with a 3-fold excess of ferricyanide. Site-directed mutagenesis experiments have identified Cys139, Cys228, and Cys231 as ligands to the cluster. The remaining two cysteines present in the enzyme, Cys140 and Cys256, form a redox-active disulfide/dithiol couple (E(m) = -300 mV at pH 7.0) that appears to play a role in the catalytic mechanism of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Cisteína/química , Proteínas Hierro-Azufre/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Pseudomonas aeruginosa/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cisteína/genética , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/genética , Ligandos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/aislamiento & purificación , Proteínas Recombinantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrofotometría Ultravioleta , Espectrometría Raman
17.
Plant Physiol ; 134(3): 1027-38, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14976238

RESUMEN

Peroxiredoxins are ubiquitous thioredoxin- or glutaredoxin-dependent peroxidases, the function of which is to destroy peroxides. Peroxiredoxin Q, one of the four plant subtypes, is a homolog of the bacterial bacterioferritin comigratory proteins. We show here that the poplar (Populus tremula x Populus tremuloides) protein acts as a monomer with an intramolecular disulfide bridge between two conserved cysteines. A wide range of electron donors and substrates was tested. Unlike type II peroxiredoxin, peroxiredoxin Q cannot use the glutaredoxin or cyclophilin isoforms tested, but various cytosolic, chloroplastic, and mitochondrial thioredoxins are efficient electron donors with no marked specificities. The redox midpoint potential of the peroxiredoxin Q catalytic disulfide is -325 mV at pH 7.0, explaining why the wild-type protein is reduced by thioredoxin but not by glutaredoxin. Additional evidence that thioredoxin serves as a donor comes from the formation of heterodimers between peroxiredoxin Q and monocysteinic mutants of spinach (Spinacia oleracea) thioredoxin m. Peroxiredoxin Q can reduce various alkyl hydroperoxides, but with a better efficiency for cumene hydroperoxide than hydrogen peroxide and tertiary butyl hydroperoxide. The use of immunolocalization and of a green fluorescence protein fusion construct indicates that the transit sequence efficiently targets peroxiredoxin Q to the chloroplasts and especially to those of the guard cells. The expression of this protein and of type II peroxiredoxin is modified in response to an infection by two races of Melampsora larici-populina, the causative agent of the poplar rust. In the case of an hypersensitive response, the peroxiredoxin expression increased, whereas it decreased during a compatible interaction.


Asunto(s)
Peroxidasas/metabolismo , Populus/metabolismo , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Secuencia de Bases , Dominio Catalítico/genética , Tiorredoxinas en Cloroplasto , Cloroplastos/metabolismo , ADN de Plantas/genética , Dimerización , Transporte de Electrón , Expresión Génica , Genes de Plantas , Sustancias Macromoleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Peroxidasas/química , Peroxidasas/genética , Peroxirredoxinas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
18.
Biochemistry ; 42(50): 14877-84, 2003 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-14674763

RESUMEN

Oxidation-reduction midpoint potential (E(m)) versus pH profiles were measured for wild-type thioredoxins from Escherichia coli and from the green alga Chlamydomonas reinhardtii and for a number of site-directed mutants of these two thioredoxins. These profiles all exhibit slopes of approximately -59 mV per pH unit, characteristic of the uptake of two protons per reduction of an active-site thioredoxin disulfide, at acidic, neutral, and moderately alkaline pH values. At higher pH values, these profiles exhibit slopes of either -29.5 mV per pH unit, characteristic of the uptake of one proton per disulfide reduced, or are pH-independent, indicating that neither proton uptake nor proton release is associated with reduction of the active-site disulfide. Reduction of the two wild-type thioredoxins is accompanied by the uptake of two protons even at pH values where the more acidic cysteine thiol group of the reduced proteins would be expected to be completely unprotonated. The effect of site-directed mutagenesis of two highly conserved aspartate residues that play important structural and/or catalytic roles in both thioredoxins, and which could in principle play a role in proton transfer, on the pK(a) values of redox-linked acid dissociations (deduced from changes in slope of the E(m) versus pH profiles) has also been determined for both E. coli thioredoxin and C. reinhardtii thioredoxin h.


Asunto(s)
Chlamydomonas reinhardtii/química , Proteínas de Escherichia coli/química , Tiorredoxinas/química , Alanina/genética , Animales , Ácido Aspártico/genética , Sitios de Unión/genética , Chlamydomonas reinhardtii/genética , Cisteína/química , Cisteína/genética , Disulfuros/química , Transporte de Electrón/genética , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Protones , Tiorredoxina h , Tiorredoxinas/genética , Triptófano/genética
19.
EMBO J ; 22(18): 4699-708, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12970182

RESUMEN

All living organisms alter their physiology in response to changes in oxygen tension. The photosynthetic bacterium uses the RegB-RegA signal transduction cascade to control a wide variety of oxygen-responding processes such as respiration, photosynthesis, carbon fixation and nitrogen fixation. We demonstrate that a highly conserved cysteine has a role in controlling the activity of the sensor kinase, RegB. In vitro studies indicate that exposure of RegB to oxidizing conditions results in the formation of an intermolecular disulfide bond and that disulfide bond formation is metal-dependent, with the metal fulfilling a structural role. Formation of a disulfide bond in vitro is also shown to convert the kinase from an active dimer into an inactive tetramer state. Mutational analysis indicates that a cysteine residue flanked by cationic amino acids is involved in redox sensing in vitro and in vivo. These residues appear to constitute a novel 'redox-box' that is present in sensor kinases from diverse species of bacteria.


Asunto(s)
Proteínas Bacterianas , Cisteína , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Quinasas , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Oxidación-Reducción , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter capsulatus/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
Biochemistry ; 41(28): 8868-75, 2002 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-12102629

RESUMEN

Under anaerobic conditions, intact cells of the purple sulfur bacterium Chromatium vinosum exhibit rapid photooxidation of the two low-potential hemes of the c-type cytochrome associated with the reaction center, after exposure to two short light flashes separated by a dark interval. Reduction of the photooxidized low-potential hemes is very slow under these conditions. On subsequent flashes, rapid photooxidation of a high-potential reaction center heme occurs and is followed by its rereduction on the millisecond time scale. Cells maintained under aerobic conditions exhibit the millisecond time scale reduction of the photooxidized high-potential heme after each flash. Cells grown autotrophically in the presence of Na(2)S and Na(2)S(2)O(3) appear to use the soluble [4Fe-4S]-containing protein, HiPIP, as the only direct electron donor to the reaction center heme under aerobic conditions. In contrast, cells grown in the presence of organic compounds, but in the absence of Na(2)S and Na(2)S(2)O(3), appear to use a soluble c-type cytochrome (most likely cytochrome c(8)) as the only electron donor to the reaction center heme under aerobic conditions. Cells grown autotrophically, in the presence of Na(2)S and Na(2)S(2)O(3), have a slightly higher ratio of HiPIP to cytochrome c(8) and a ratio of Rieske iron-sulfur protein to reaction center that is approximately one-half that of cells grown in the absence of Na(2)S and Na(2)S(2)O(3) but in the presence of organic compounds.


Asunto(s)
Proteínas Bacterianas , Chromatium/enzimología , Grupo Citocromo c/metabolismo , Hierro/metabolismo , Metaloproteínas/metabolismo , Aerobiosis , Anaerobiosis , Oscuridad , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Cinética , Luz , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA