Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Nat Commun ; 15(1): 5201, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890295

RESUMEN

Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.


Asunto(s)
Autofagia , Humanos , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Ligandos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/agonistas , Ratones , Células HEK293 , Genómica/métodos , Línea Celular Tumoral
2.
ACS Chem Biol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934237

RESUMEN

TRIM7 is a ubiquitin E3 ligase with key regulatory functions, mediating viral infection, tumor biology, innate immunity, and cellular processes, such as autophagy and ferroptosis. It contains a PRYSPRY domain that specifically recognizes degron sequences containing C-terminal glutamine. Ligands that bind to the TRIM7 PRYSPRY domain may have applications in the treatment of viral infections, as modulators of inflammation, and in the design of a new class of PROTACs (PROteolysis TArgeting Chimeras) that mediate the selective degradation of therapeutically relevant proteins (POIs). Here, we developed an assay toolbox for the comprehensive evaluation of TRIM7 ligands. Using TRIM7 degron sequences together with a structure-based design, we developed the first series of peptidomimetic ligands with low micromolar affinity. The terminal carboxylate moiety was required for ligand activity but prevented cell penetration. A prodrug strategy using an ethyl ester resulted in enhanced permeability, which was evaluated using confocal imaging.

3.
Gut ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821858

RESUMEN

OBJECTIVE: The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN: To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS: Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION: One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.

4.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38780468

RESUMEN

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Pteridinas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Pteridinas/farmacología , Pteridinas/química , Pteridinas/síntesis química , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Quinasa Idelta de la Caseína/metabolismo , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Caseína Cinasa 1 épsilon/metabolismo , Línea Celular Tumoral
5.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38604131

RESUMEN

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Asunto(s)
Inhibidores de Proteínas Quinasas , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Relación Estructura-Actividad , Microsomas Hepáticos/metabolismo
6.
J Med Chem ; 67(6): 4691-4706, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38470246

RESUMEN

Disease-related phenotypic assays enable unbiased discovery of novel bioactive small molecules and may provide novel insights into physiological systems and unprecedented molecular modes of action (MMOA). Herein, we report the identification and characterization of epoxykynin, a potent inhibitor of the soluble epoxide hydrolase (sEH). Epoxykynin was discovered by means of a cellular assay monitoring modulation of kynurenine (Kyn) levels in BxPC-3 cells upon stimulation with the cytokine interferon-γ (IFN-γ) and subsequent target identification employing affinity-based chemical proteomics. Increased Kyn levels are associated with immune suppression in the tumor microenvironment and, thus, the Kyn pathway and its key player indoleamine 2,3-dioxygenase 1 (IDO1) are appealing targets in immuno-oncology. However, targeting IDO1 directly has led to limited success in clinical investigations, demonstrating that alternative approaches to reduce Kyn levels are in high demand. We uncover a cross-talk between sEH and the Kyn pathway that may provide new opportunities to revert cancer-induced immune tolerance.


Asunto(s)
Quinurenina , Neoplasias , Humanos , Quinurenina/metabolismo , Neoplasias/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa , Microambiente Tumoral
7.
Protein Sci ; 33(3): e4917, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358265

RESUMEN

Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition. The catalytic domain of HDAC4 is known to interact with the SMRT/NCOR corepressor complex when the structural zinc-binding domain (sZBD) is intact and forms a closed conformation. Crystal structures of the HDAC4 catalytic domain have been reported showing an open conformation of HDAC4 when bound to certain ligands. Here, we investigated the relevance of this HDAC4 conformation under physiological conditions in solution. We show that proper zinc chelation in the sZBD is essential for enzyme function. Loss of the structural zinc ion not only leads to a massive decrease in enzyme activity, but it also has serious consequences for the overall structural integrity and stability of the protein. However, the Zn2+ free HDAC4 structure in solution is incompatible with the open conformation. In solution, the open conformation of HDAC4 was also not observed in the presence of a variety of structurally divergent ligands. This suggests that the open conformation of HDAC4 cannot be induced in solution, and therefore cannot be exploited for the development of HDAC4-specific inhibitors.


Asunto(s)
Histona Desacetilasas , Zinc , Humanos , Dominio Catalítico , Ligandos , Fosforilación , Histona Desacetilasas/química
8.
J Med Chem ; 67(5): 3813-3842, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38422480

RESUMEN

Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Quinasas p21 Activadas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Mamíferos/metabolismo
9.
J Med Chem ; 67(3): 2152-2164, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38237049

RESUMEN

Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Receptores X Retinoide/metabolismo , Ligandos , Regulación de la Expresión Génica
10.
ACS Chem Biol ; 19(2): 266-279, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38291964

RESUMEN

Bromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound. Systematic structure-guided modification of both warheads then led to optimized binders that were superior in potency to both parent compounds, with the best molecules of this series binding to both BRD4 bromodomains as well as HDAC1/2 with EC50 values in the 100 nM range in cellular NanoBRET target engagement assays. For one of our lead molecules, we could also show the selective inhibition of HDAC1/2 over all other zinc-dependent HDACs. Importantly, this on-target activity translated into promising efficacy in pancreatic cancer and NUT midline carcinoma cells. Our lead molecules effectively blocked histone H3 deacetylation in pancreatic cancer cells and upregulated the tumor suppressor HEXIM1 and proapoptotic p57, both markers of BET inhibition. In addition, they have the potential to downregulate the oncogenic drivers of NUT midline carcinoma, as demonstrated for MYC and TP63 mRNA levels. Overall, this study expands the portfolio of available dual BET/class I HDAC inhibitors for future translational studies in different cancer models.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias Pancreáticas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Farmacóforo , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Proteínas de Unión al ARN , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
11.
J Med Chem ; 67(1): 674-690, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38126712

RESUMEN

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Mamíferos/metabolismo
12.
Elife ; 122023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38047771

RESUMEN

Kinase inhibitors are successful therapeutics in the treatment of cancers and autoimmune diseases and are useful tools in biomedical research. However, the high sequence and structural conservation of the catalytic kinase domain complicate the development of selective kinase inhibitors. Inhibition of off-target kinases makes it difficult to study the mechanism of inhibitors in biological systems. Current efforts focus on the development of inhibitors with improved selectivity. Here, we present an alternative solution to this problem by combining inhibitors with divergent off-target effects. We develop a multicompound-multitarget scoring (MMS) method that combines inhibitors to maximize target inhibition and to minimize off-target inhibition. Additionally, this framework enables optimization of inhibitor combinations for multiple on-targets. Using MMS with published kinase inhibitor datasets we determine potent inhibitor combinations for target kinases with better selectivity than the most selective single inhibitor and validate the predicted effect and selectivity of inhibitor combinations using in vitro and in cellulo techniques. MMS greatly enhances selectivity in rational multitargeting applications. The MMS framework is generalizable to other non-kinase biological targets where compound selectivity is a challenge and diverse compound libraries are available.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Antineoplásicos/uso terapéutico , Fosfotransferasas , Dominio Catalítico , Neoplasias/tratamiento farmacológico
13.
Molecules ; 28(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38067641

RESUMEN

Sixteen new 2-substituted quinazolines were synthesized using a straightforward methodology starting from 2-methoxybezoic acid or 3-methoxy-2-naphthoic acid. The anti-proliferative activity of the target compounds was evaluated against nine cancer cell lines. Additionally, all the compounds were screened for their potency and selectivity against a panel of 109 kinases and four bromodomains, using Differential Scanning Fluorimetry (DSF). Compound 17 bearing a 2-methoxyphenyl substitution along with a basic side chain displayed a remarkable profile against the majority of the tested cell lines.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Quinazolinas/farmacología , Línea Celular , Relación Estructura-Actividad , Antineoplásicos/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-38009092

RESUMEN

Small molecule modulators are important tools to study both basic biology and the complex signaling of protein kinases. The cdc2-like kinases (CLK) are a family of four kinases that have garnered recent interest for their involvement in a diverse set of diseases such as neurodegeneration, autoimmunity, and many cancers. Targeted medicinal chemistry around a CLK inhibitor hit identified through screening of a kinase inhibitor set against a large panel of kinases allowed us to identify a potent and selective inhibitor of CLK1, 2, and 4. Here, we present the synthesis, selectivity, and preliminary biological characterization of this compound - SGC-CLK-1 (CAF-170). We further show CLK2 has the highest binding affinity, and high CLK2 expression correlates with a lower IC50 in a screen of multiple cancer cell lines. Finally, we show that SGC-CLK-1 not only reduces serine arginine-rich (SR) protein phosphorylation but also alters SR protein and CLK2 subcellular localization in a reversible way. Therefore, we anticipate that this compound will be a valuable tool for increasing our understanding of CLKs and their targets, SR proteins, at the level of phosphorylation and subcellular localization.

15.
Circ Res ; 133(10): 842-857, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37800327

RESUMEN

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Asunto(s)
Sulfuro de Hidrógeno , Telomerasa , Animales , Humanos , Ratones , Senescencia Celular , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Sulfuro de Hidrógeno/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Cell Death Dis ; 14(10): 674, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828008

RESUMEN

The two p53 homologues p63 and p73 regulate transcriptional programs in epithelial tissues and several cell types in these tissues express both proteins. All members of the p53 family form tetramers in their active state through a dedicated oligomerization domain that structurally assembles as a dimer of dimers. The oligomerization domain of p63 and p73 share a high sequence identity, but the p53 oligomerization domain is more divergent and it lacks a functionally important C-terminal helix present in the other two family members. Based on these structural differences, p53 does not hetero-oligomerize with p63 or p73. In contrast, p63 and p73 form hetero-oligomers of all possible stoichiometries, with the hetero-tetramer built from a p63 dimer and a p73 dimer being thermodynamically more stable than the two homo-tetramers. This predicts that in cells expressing both proteins a p632/p732 hetero-tetramer is formed. So far, the tools to investigate the biological function of this hetero-tetramer have been missing. Here we report the generation and characterization of Designed Ankyrin Repeat Proteins (DARPins) that bind with high affinity and selectivity to the p632/p732 hetero-tetramer. Using these DARPins we were able to confirm experimentally the existence of this hetero-tetramer in epithelial mouse and human tissues and show that its level increases in squamous cell carcinoma.


Asunto(s)
Carcinoma de Células Escamosas , Factores de Transcripción , Animales , Humanos , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proteínas de Repetición de Anquirina Diseñadas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73/genética , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Methods Mol Biol ; 2706: 59-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558941

RESUMEN

The characterization of chemogenomic libraries with respect to their general effect on cellular health represents essential data for the annotation of phenotypic responses. Here, we describe a multidimensional high-content live cell assay that allows to examine cell viability in different cell lines, based on their nuclear morphology as well as modulation of small molecules of tubulin structure, mitochondrial health, and membrane integrity. The protocol monitors cells during a time course of 48 h using osteosarcoma cells, human embryonic kidney cells, and untransformed human fibroblasts as an example. The described protocol can be easily established and it can be adapted to other cell lines or other parameters important for cellular health.


Asunto(s)
Fibroblastos , Microscopía , Humanos , Línea Celular , Tubulina (Proteína) , Mitocondrias
18.
Autophagy ; 19(11): 2982-2996, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37439113

RESUMEN

The selective autophagic degradation of mitochondria via mitophagy is essential for preserving mitochondrial homeostasis and, thereby, disease maintenance and progression in acute myeloid leukemia (AML). Mitophagy is orchestrated by a variety of mitophagy receptors whose interplay is not well understood. Here, we established a pairwise multiplexed CRISPR screen targeting mitophagy receptors to elucidate redundancies and gain a deeper understanding of the functional interactome governing mitophagy in AML. We identified OPTN (optineurin) as sole non-redundant mitophagy receptor and characterized its unique role in AML. Knockdown and overexpression experiments demonstrated that OPTN expression is rate-limiting for AML cell proliferation. In a MN1-driven murine transplantation model, loss of OPTN prolonged overall median survival by 7 days (+21%). Mechanistically, we found broadly impaired mitochondrial respiration and function with increased mitochondrial ROS, that most likely caused the proliferation defect. Our results decipher the intertwined network of mitophagy receptors in AML for both ubiquitin-dependent and receptor-mediated mitophagy, identify OPTN as a non-redundant tool to study mitophagy in the context of leukemia and suggest OPTN inhibition as an attractive therapeutic strategy.Abbreviations: AML: acute myeloid leukemia; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; CTRL: control; DFP: deferiprone; GI: genetic interaction; KD: knockdown; KO: knockout; ldMBM, lineage-depleted murine bone marrow; LFC: log2 fold change; LIR: LC3-interacting region; LSC: leukemic stem cell; MAGeCK: Model-based Analysis of Genome-wide CRISPR-Cas9 Knockout; MDIVI-1: mitochondrial division inhibitor 1; MOI: multiplicity of infection; MOM: mitochondrial outer membrane; NAC: N-acetyl-L-cysteine; OA: oligomycin-antimycin A; OCR: oxygen consumption rate; OE: overexpression; OPTN: optineurin; PINK1: PTEN induced putative kinase 1; ROS: reactive oxygen species; SEM: standard error of the mean; TCGA: The Cancer Genome Atlas; TEM: transmission electron microscopy; UBD: ubiquitin-binding domain; WT: wild type.


Asunto(s)
Leucemia Mieloide Aguda , Mitofagia , Animales , Ratones , Autofagia , Mitofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas , Humanos
19.
Cancer Discov ; 13(10): 2192-2211, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37489084

RESUMEN

In colorectal cancers, the tumor microenvironment plays a key role in prognosis and therapy efficacy. Patient-derived tumor organoids (PDTO) show enormous potential for preclinical testing; however, cultured tumor cells lose important characteristics, including the consensus molecular subtypes (CMS). To better reflect the cellular heterogeneity, we established the colorectal cancer organoid-stroma biobank of matched PDTOs and cancer-associated fibroblasts (CAF) from 30 patients. Context-specific phenotyping showed that xenotransplantation or coculture with CAFs improves the transcriptomic fidelity and instructs subtype-specific stromal gene expression. Furthermore, functional profiling in coculture exposed CMS4-specific therapeutic resistance to gefitinib and SN-38 and prognostic expression signatures. Chemogenomic library screening identified patient- and therapy-dependent mechanisms of stromal resistance including MET as a common target. Our results demonstrate that colorectal cancer phenotypes are encrypted in the cancer epithelium in a plastic fashion that strongly depends on the context. Consequently, CAFs are essential for a faithful representation of molecular subtypes and therapy responses ex vivo. SIGNIFICANCE: Systematic characterization of the organoid-stroma biobank provides a resource for context dependency in colorectal cancer. We demonstrate a colorectal cancer subtype memory of PDTOs that is independent of specific driver mutations. Our data underscore the importance of functional profiling in cocultures for improved preclinical testing and identification of stromal resistance mechanisms. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Humanos , Bancos de Muestras Biológicas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Células Tumorales Cultivadas , Fibroblastos Asociados al Cáncer/metabolismo , Organoides/patología , Microambiente Tumoral/genética
20.
Cell Death Discov ; 9(1): 262, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495567

RESUMEN

Receptor-interacting protein kinases (RIPK)-1 and -3 play crucial roles in cell fate decisions and are regulated by multiple checkpoint controls. Previous studies have identified IKK1/2- and p38/MK2-dependent checkpoints that phosphorylate RIPK1 at different residues to inhibit its activation. In this study, we investigated TNF-induced death in MAPK-activated protein kinase 2 (MK2)-deficient cells and found that MK2 deficiency or inactivation predominantly leads to necroptotic cell death, even without caspase inhibition. While RIPK1 inhibitors can rescue MK2-deficient cells from necroptosis, inhibiting RIPK3 seems to switch the process to apoptosis. To understand the underlying mechanism of this switch, we screened a library of 149 kinase inhibitors and identified the adenosine analog 5-Iodotubercidin (5-ITu) as the most potent compound that sensitizes MK2-deficient MEFs to TNF-induced cell death. 5-ITu also enhances LPS-induced necroptosis when combined with MK2 inhibition in RAW264.7 macrophages. Further mechanistic studies revealed that 5-ITu induces RIPK1-dependent necroptosis by suppressing IKK signaling in the absence of MK2 activity. These findings highlight the role for the multitarget kinase inhibitor 5-ITu in TNF-, LPS- and chemotherapeutics-induced necroptosis and its potential implications in RIPK1-targeted therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA