Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nanoscale Horiz ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018043

RESUMEN

Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.

2.
J Mater Sci Mater Med ; 35(1): 33, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900208

RESUMEN

Phosphate bioactive glass has been studied for its advanced biodegradability and active ion release capability. Our previous research found that phosphate glass containing (P2O5)-(Na2O)-(TiO2)-(CaO)-(SrO) or (ZnO) showed good biocompatibility with MG63 and hMSCs. This study further investigated the application of 5 mol% zinc oxide or 17.5 mol% strontium oxide in titanium-doped phosphate glass for bone tissue engineering. Ti-Ca-Na-Phosphate glasses, incorporating 5% zinc oxide or 17.5% strontium oxide, were made with melting quenching technology. The pre-osteoblast cell line MC3T3-E1 was cultured for indirect contact tests with graded diluted phosphate glass extractions and for direct contact tests by seeding cells on glass disks. The cell viability and cytotoxicity were analysed in vitro over 7 days. In vivo studies utilized the tibial defect model with or without glass implants. The micro-CT analysis was performed after surgery and then at 2, 6, and 12 weeks. Extractions from both zinc and strontium phosphate glasses showed no negative impact on MC3T3-E1 cell viability. Notably, non-diluted Zn-Ti-Ca-Na-phosphate glass extracts significantly increased cell viability by 116.8% (P < 0.01). Furthermore, MC3T3-E1 cells cultured with phosphate glass disks exhibited no increase in LDH release compared with the control group. Micro-CT images revealed that, over 12 weeks, both zinc-doped and strontium-doped phosphate glasses demonstrated good bone incorporation and longevity compared to the no-implant control. Titanium-doped phosphate glasses containing 5 mol% zinc oxide, or 17.5 mol% strontium oxide have promising application potential for bone regeneration research.


Asunto(s)
Regeneración Ósea , Supervivencia Celular , Vidrio , Fosfatos , Estroncio , Titanio , Estroncio/química , Estroncio/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Fosfatos/química , Fosfatos/farmacología , Vidrio/química , Titanio/química , Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales , Zinc/química , Línea Celular , Osteoblastos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Microtomografía por Rayos X
3.
Biomolecules ; 13(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37238681

RESUMEN

Approximately half of an adult human's body weight is made up of muscles. Thus, restoring the functionality and aesthetics of lost muscle tissue is critical. The body is usually able to repair minor muscle injuries. However, when volumetric muscle loss occurs due to tumour extraction, for instance, the body will form fibrous tissue instead. Gelatin methacryloyl (GelMA) hydrogels have been applied for drug delivery, tissue adhesive, and various tissue engineering applications due to their tuneable mechanical properties. Here, we have synthesised GelMA from different gelatin sources (i.e., porcine, bovine, and fish) with varying bloom numbers, which refers to the gel strength, and investigated for the influence of the source of gelatin and the bloom number on biological activities and mechanical properties. The results indicated that the source of the gelatin and variable bloom numbers have an impact on GelMA hydrogel properties. Furthermore, our findings established that the bovine-derived gelatin methacryloyl (B-GelMA) has better mechanical properties than the other varieties composed of porcine and fish with 60 kPa, 40 kPa, and 10 kPa in bovine, porcine, and fish, respectively. Additionally, it showed a noticeably greater swelling ratio (SR) ~1100% and a reduced rate of degradation, improving the stability of hydrogels and giving cells adequate time to divide and proliferate to compensate for muscle loss. Furthermore, the bloom number of gelatin was also proven to influence the mechanical properties of GelMA. Interestingly, although GelMA made of fish had the lowest mechanical strength and gel stability, it demonstrated excellent biological properties. Overall, the results emphasise the importance of gelatin source and bloom number, allowing GelMA hydrogels to have a wide range of mechanical and excellent biological properties and making them suitable for various muscle tissue regeneration applications.


Asunto(s)
Gelatina , Hidrogeles , Animales , Bovinos , Humanos , Porcinos , Gelatina/farmacología , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Peces , Músculos
4.
Bioeng Transl Med ; 7(3): e10332, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176615

RESUMEN

Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%-80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-cell-adhesive, and degradable) nature and biocompatibility, is considered a potential tissue-regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity.

5.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884657

RESUMEN

This study deals with the process of optimization and synthesis of Poly(3-hydroxybutyrate) microspheres with encapsulated Cl-amidine. Cl-amidine is an inhibitor of peptidylarginine deiminases (PADs), a group of calcium-dependent enzymes, which play critical roles in a number of pathologies, including autoimmune and neurodegenerative diseases, as well as cancer. While Cl-amidine application has been assessed in a number of in vitro and in vivo models; methods of controlled release delivery remain to be investigated. P(3HB) microspheres have proven to be an effective delivery system for several compounds applied in antimicrobial, wound healing, cancer, and cardiovascular and regenerative disease models. In the current study, P(3HB) microspheres with encapsulated Cl-amidine were produced in a size ranging from ~4-5 µm and characterized for surface morphology, porosity, hydrophobicity and protein adsorption, in comparison with empty P(3HB) microspheres. Cl-amidine encapsulation in P(3HB) microspheres was optimized, and these were found to be less hydrophobic, compared with the empty microspheres, and subsequently adsorbed a lower amount of protein on their surface. The release kinetics of Cl-amidine from the microspheres were assessed in vitro and expressed as a function of encapsulation efficiency. There was a burst release of ~50% Cl-amidine in the first 24 h and a zero order release from that point up to 16 days, at which time point ~93% of the drug had been released. As Cl-amidine has been associated with anti-cancer effects, the Cl-amidine encapsulated microspheres were assessed for the inhibition of vascular endothelial growth factor (VEGF) expression in the mammalian breast cancer cell line SK-BR-3, including in the presence of the anti-proliferative drug rapamycin. The cytotoxicity of the combinatorial effect of rapamycin with Cl-amidine encapsulated P(3HB) microspheres was found to be 3.5% more effective within a 24 h period. The cells treated with Cl-amidine encapsulated microspheres alone, were found to have 36.5% reduction in VEGF expression when compared with untreated SK-BR-3 cells. This indicates that controlled release of Cl-amidine from P(3HB) microspheres may be effective in anti-cancer treatment, including in synergy with chemotherapeutic agents. Using controlled drug-delivery of Cl-amidine encapsulated in Poly(3-hydroxybutyrate) microspheres may be a promising novel strategy for application in PAD-associated pathologies.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores Enzimáticos/administración & dosificación , Hidroxibutiratos/administración & dosificación , Ornitina/análogos & derivados , Poliésteres/administración & dosificación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Femenino , Humanos , Hidroxibutiratos/química , Microesferas , Ornitina/administración & dosificación , Ornitina/química , Poliésteres/química , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Front Bioeng Biotechnol ; 9: 647007, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898403

RESUMEN

Due to the threat posed by the rapid growth in the resistance of microbial species to antibiotics, there is an urgent need to develop novel materials for biomedical applications capable of providing antibacterial properties without the use of such drugs. Bone healing represents one of the applications with the highest risk of postoperative infections, with potential serious complications in case of bacterial contaminations. Therefore, tissue engineering approaches aiming at the regeneration of bone tissue should be based on the use of materials possessing antibacterial properties alongside with biological and functional characteristics. In this study, we investigated the combination of polyhydroxyalkanoates (PHAs) with a novel antimicrobial hydroxyapatite (HA) containing selenium and strontium. Strontium was chosen for its well-known osteoinductive properties, while selenium is an emerging element investigated for its multi-functional activity as an antimicrobial and anticancer agent. Successful incorporation of such ions in the HA structure was obtained. Antibacterial activity against Staphylococcus aureus 6538P and Escherichia coli 8739 was confirmed for co-substituted HA in the powder form. Polymer-matrix composites based on two types of PHAs, P(3HB) and P(3HO-co-3HD-co-3HDD), were prepared by the incorporation of the developed antibacterial HA. An in-depth characterization of the composite materials was conducted to evaluate the effect of the filler on the physicochemical, thermal, and mechanical properties of the films. In vitro antibacterial testing showed that the composite samples induce a high reduction of the number of S. aureus 6538P and E. coli 8739 bacterial cells cultured on the surface of the materials. The films are also capable of releasing active ions which inhibited the growth of both Gram-positive and Gram-negative bacteria.

7.
J Craniofac Surg ; 32(1): 360-364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32769577

RESUMEN

OBJECTIVES: To: (1) design an artifact-free 3D-printed MR-safe temporary transfer device, (2) engineer bone-pins from carbon fiber reinforced polyether ether ketone (CFR-PEEK), (3) evaluate the imaging artifacts of CFR-PEEK, and (4) confirm the osteointegration potential of CFR-PEEK, thus enhancing 3D-planning of bony advancements in hemifacial microsomia using sequential magnetic resonance imaging (MRI). STUDY DESIGN: Engineered CRF-PEEK bone pins and a 3D printed ex-fix device were implanted into a sheep head and imaged with MRI and computed tomography . The osseointegration and bony compatibility potential of CFR-PEEK was assessed with scanning electron microscopy images of MC3T3 preosteoblast cells on the surface of the material. RESULTS: The CFR-PEEK pins resulted in a signal void equivalent to the dimension of the pin, with no adjacent areas of MR-signal loss or computed tomography artifact. MCT3 cells adhered and proliferated on the surface of the discs by forming a monolayer of cells, confirming compatibility and osseointegration potential. CONCLUSION: A 3D printed transfer device could be utilized temporarily during MRI to permit artifact-free 3D planning. CFR-PEEK pins eliminate imaging artifact permitting sequential MRI examination. In combination, this has the potential to enhance distraction osteogenesis, by permitting accurate three-dimensional planning without ionizing radiation.


Asunto(s)
Artefactos , Osteogénesis por Distracción , Animales , Benzofenonas , Clavos Ortopédicos , Carbono , Fibra de Carbono , Éteres , Cetonas , Imagen por Resonancia Magnética , Polietilenglicoles , Polímeros , Ovinos
8.
Biomed Mater ; 16(1): 015007, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-32674078

RESUMEN

Three-dimensional (3D) printing enhances the production of on-demand fabrication of patient-specific devices, as well as anatomically fitting implants with high complexity in a cost-effective manner. Additive systems that employ vat photopolymerisation such as stereolithography (SLA) and digital light projection are used widely in the field of biomedical science and engineering. However, additive manufacturing methods can be limited by the types of materials that can be used. In this study, we present an isosorbide-based formulation for a polymer resin yielding a range of elastic moduli between 1.7 and 3 GN mm-2 dependent on the photoinitiator system used as well as the amount of calcium phosphate filler added. The monomer was prepared and enhanced for 3D-printing using an SLA technique that delivered stable and optimized 3D-printed models. The resin discussed could potentially be used following major surgery for the correction of congenital defects, the removal of oral tumours and the reconstruction of the head and neck region. The surgeon is usually limited with devices available to restore both function and appearance and with the ever-increasing demand for low-priced and efficient facial implants, there is an urgent need to advance new manufacturing approaches and implants with a higher osseointegration performance.


Asunto(s)
Materiales Biocompatibles/síntesis química , Polímeros/síntesis química , Impresión Tridimensional , Prótesis e Implantes , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Sustitutos de Huesos/síntesis química , Sustitutos de Huesos/química , Adhesión Celular , Línea Celular , Dureza , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Procesos Fotoquímicos , Polímeros/química , Medicina de Precisión , Resinas Sintéticas/síntesis química , Resinas Sintéticas/química , Estereolitografía , Ingeniería de Tejidos/métodos , Humectabilidad
9.
J Tissue Eng ; 11: 2041731420933407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637062

RESUMEN

Cancer stem cells have been shown to be important in tumorigenesis processes, such as tumor growth, metastasis, and recurrence. As such, many three-dimensional models have been developed to establish an ex vivo microenvironment that cancer stem cells experience under in vivo conditions. Cancer stem cells propagating in three-dimensional culture systems show physiologically related signaling pathway profiles, gene expression, cell-matrix and cell-cell interactions, and drug resistance that reflect at least some of the tumor properties seen in vivo. Herein, we discussed the presently available Cancer stem cell three-dimensional culture models that use biomaterials and engineering tools and the biological implications of these models compared to the conventional ones.

10.
J Tissue Eng ; 11: 2041731419897460, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180936

RESUMEN

Brain diseases including neurodegenerative disorders and tumours are among the most serious health problems, degrading the quality of life and causing massive economic cost. Nanoparticles that load and deliver drugs and genes have been intensively studied for the treatment of brain diseases, and have demonstrated some biological effects in various animal models. Among other efforts taken in the nanoparticle development, targeting of blood brain barrier, specific cell type or local intra-/extra-cellular space is an important strategy to enhance the therapeutic efficacy of the nanoparticle delivery systems. This review underlies the targeting issue in the nanoparticle development for the treatment of brain diseases, taking key exemplar studies carried out in various in vivo models.

11.
Biomed Mater ; 15(4): 045024, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32100724

RESUMEN

The biocompatibility and neuron regenerating properties of various bioactive glass (BG)/polyhydroxyalkanoate (PHA) blend composites were assessed in order to study their suitability for peripheral nerve tissue applications, specifically as lumen structures for nerve guidance conduits. BG/PHA blend composites were fabricated using Bioactive glass® 45 S5 (BG1) and BG 1393 (BG2) with the 25:75 poly(3-hydroxyoctanoate/poly3-hydroxybutyrate), 25:75 P(3HO)/P(3HB) blend (PHA blend). Various concentrations of each BG (0.5 wt%, 1.0 wt% and 2.5 wt%) were used to determine the effect of BG on neuronal growth and differentiation, in single culture using NG108-15 neuronal cells and in a co-culture along with RN22 Schwann cells. NG108-15 cells exhibited good growth and differentiation on all the PHA blend composites showing that both BGs have good biocompatibility at 0.5 wt%, 1.0 wt% and 2.5 wt% within the PHA blend. The Young's modulus values displayed by all the PHA blend/BG composites ranged from 385.6 MPa to 1792.6 MPa, which are able to provide the required support and protective effect for the regeneration of peripheral nerves. More specifically, the tensile strength obtained in the PHA blend/BG1 (1.0 wt%) (10.0 ± 0.6 MPa) was found to be similar to that of the rabbit peroneal nerve. This composite also exhibited the best biological performance in supporting growth and neuronal differentiation among all the substrates. The neurite extension on this composite was found to be remarkable with the neurites forming a complex connection network.


Asunto(s)
Materiales Biocompatibles/química , Cerámica/química , Ensayo de Materiales/métodos , Neuronas/efectos de los fármacos , Polihidroxialcanoatos/química , Andamios del Tejido , Animales , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Vidrio/química , Hidroxibutiratos/química , Ratones , Regeneración Nerviosa , Neuritas/metabolismo , Neuronas/metabolismo , Poliésteres/química , Presión , Conejos , Ratas , Células de Schwann/citología , Estrés Mecánico , Temperatura , Resistencia a la Tracción , Ingeniería de Tejidos
12.
ACS Appl Bio Mater ; 3(4): 2218-2229, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35025274

RESUMEN

Nanomaterials combined with phototherapy and multimodal imaging are promising for cancer theranostics. Our aim is to develop fluorescent mesoporous bioglass nanoparticles (fBGn) based on carbon dots (CD) with delivery, triple-mode imaging, and photothermal (PTT) properties for cancer theranostics. A direct and label-free approach was used to prepare multicolor fluorescent fBGn with 3-aminopropyl triethoxysilane as the surface-functionalizing agent. The calcination at 400 °C provided fBGn with high fluorescence intensity originating from the CD. In particular, a triple-mode emission [fluorescence imaging, two-photon (TP), and Raman imaging] was observed which depended on CD nature and surface properties such as surface oxidation edge state, amorphous region, nitrogen passivation of surface state, and crystalline region. The fBGn also exhibited phototherapeutic properties such as photodynamic (PDT) and PTT effects. The antitumor effect of the combined PDT/PTT therapy was significantly higher than that of individual (PDT or PTT) therapy. The fBGn, due to the mesoporous structure, the anticancer drug doxorubicin could be loaded and released in a pH-dependent way to show chemotherapy effects on cancer cells. The in vivo imaging and biocompatibility of fBGn were also demonstrated in a nude mouse model. The fBGn, with the combined capacity of anticancer delivery, triple-mode imaging, and PTT/PDT therapy, are considered to be potentially useful for cancer theranostics.

13.
ACS Biomater Sci Eng ; 6(3): 1428-1437, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33455383

RESUMEN

In the present study, a mesoporous phosphate-based glass (MPG) in the P2O5-CaO-Na2O system was synthesized, for the first time, using a combination of sol-gel chemistry and supramolecular templating. A comparison between the structural properties, bioactivity, and biocompatibility of the MPG with a non-porous phosphate-based glass (PG) of analogous composition prepared via the same sol-gel synthesis method but in the absence of a templating surfactant is also presented. Results indicate that the MPG has enhanced bioactivity and biocompatibility compared to the PG, despite having a similar local structure and dissolution properties. In contrast to the PG, the MPG shows formation of hydroxycarbonate apatite (HCA) on its surface after 24 h of immersion in simulated body fluid. Moreover, MPG shows enhanced viability of Saos-2 osteosarcoma cells after 7 days of culturing. This suggests that textural properties (porosity and surface area) play a crucial role in the kinetics of HCA formation and in interaction with cells. Increased efficiency of drug loading and release over non-porous PG systems was proved using the antibiotic tetracycline hydrochloride as a drug model. This study represents a significant advance in the field of mesoporous materials for drug delivery and bone tissue regeneration as it reports, for the first time, the synthesis, structural characterization, and biocompatibility of mesoporous calcium phosphate glasses.


Asunto(s)
Líquidos Corporales , Fosfatos , Regeneración Ósea , Vidrio , Porosidad
14.
Dent Mater ; 36(1): 157-166, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31791739

RESUMEN

OBJECTIVE: Although bisphenol A-glycidyl methacrylate (Bis-GMA)-based dental materials are widely used in dentistry, Estrogenicity from released bisphenol A remains a concern due to possibility of adversely affecting the growth of children and homeostasis of adults. Here, a new family of isosorbide-derived biomonomers were synthesized and experimentally utilized as a matrix of dental sealants to provide physico-mechanical and biological properties comparable to those of a conventional Bis-GMA-based material but without the the potential estrogenicity. METHODS: After synthesis of isosorbide-derived biomonomers (ISDB) by light polymerization, an experimental dental sealant with different silica filler concentrations (0-15wt%) was characterized and compared to a commercially available Bis-GMA-based sealant. Cytotoxicity and estrogenicity assays were conducted with human oral keratinocytes and estrogen-sensitive MCF-7 cells, respectively. RESULTS: ISDB-based dental sealants exhibited typical initially smooth surfaces with depth of cure, Vickers hardness, compressive strength/modulus, water resorption/solubility, and flowability comparable to those of the commercial sealant and met the ISO standard for dental sealants and polymer-based restorative materials. Indirect cytotoxicity tests using an extract showed comparable viability among experimental ISDB-based materials and a commercial Bis-GMA-incorporated control. DNA synthesis in MCF-7 cells (a marker of estrogenicity) and the release of bisphenol A under enzymatic incubation were not detected in ISDB-based materials. SIGNIFICANCE: In conclusion, the comparable physico-mechanical properties of ISDB-based materials with their cytocompatibility and lack of estrogenicity suggest the potential usefulness of ISDBs as a newly developed and safe biomaterial.


Asunto(s)
Polietilenglicoles , Ácidos Polimetacrílicos , Adulto , Biopolímeros , Bisfenol A Glicidil Metacrilato , Niño , Resinas Compuestas , Humanos , Ensayo de Materiales , Polimerizacion
15.
Biomaterials ; 227: 119548, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31670033

RESUMEN

Recapitulating the in vivo microenvironments of damaged tissues through modulation of the physicochemical properties of scaffolds can boost endogenous regenerative capacity. A series of critical events in tissue healing including immune-responses, angiogenesis, and stem cell homing and differentiation orchestrate to relay the regeneration process. Herein, we report hierarchically structured ('microchanneled') 3D printed scaffolds (named 'µCh'), in contrast to conventional 3D printed scaffolds, induce such cellular responses in a unique way that contributes to accelerated tissue repair and remodeling. The µCh reduced the extracellular trap formation of anchored neutrophils at the very beginning (24 h) of implantation while increasing the number of live cells. Among the macrophages covered the surface of µCh over 7 days a major population polarized toward alternativelly activated phase (M2) which contrasted with control scaffolds where classically activated phase (M1) being dominant. The mesenchymal stem cells (MSCs) recruited to the µCh were significantly more than those to the control, and the event was correlated with the increased level of stem cell homing cytokine, stromal derived factor 1 (SDF1) sequestered to the µCh. Furthermore, the neo-blood vessel formation was more pronounced in the µCh, which was in line with the piling up of angiogenic factor, vascular endothelial growth factor (VEGF) in the µCh. Further assays on the protein sequestration to the µCh revealed that a set of chemokines involved in early pro-inflammatory responses were less found whereas representative adhesive proteins engaged in the cell-matrix interactions were significantly more captured. Ultimately, the fibrous capsule formation on the µCh was reduced with respect to the control, when assessed for up to 21 days, indicating less severe foreign body reaction. The tissue healing and regenerative capacity of the µCh was then confirmed in a critically sized bone model, where those series of events observed are essential to relay bone regeneration. The results over 6 weeks showed that the µCh significantly enhanced the early bone matrix deposition and accelerated bone regeneration. While more in-depth studies remain as to elucidate the underlying mechanisms for each biological event, the molecular, cellular and tissue reactions to the µCh were coherently favorable for the regeneration process of tissues, supporting the engineered scaffolds as potential therapeutic 3D platforms.


Asunto(s)
Células Madre Mesenquimatosas , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular , Animales , Regeneración Ósea , Ratones , Cicatrización de Heridas
16.
Biomater Sci ; 7(12): 5221-5231, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31595890

RESUMEN

Promoting angiogenesis is a key strategy for stimulating the repair of damaged tissues, including bone. Among other proangiogenic factors, ions have recently been considered a potent element that can be incorporated into biomaterials and then released at therapeutic doses. Silicate-based biomaterials have been reported to induce neovascularization through vascular endothelial growth factor signaling pathway, potentiating acceleration of bone regeneration. Here, we designed a silicate-shelled hydrogel fiber scaffold with a hard/soft layered structure to investigate the possibility of silicate coating on biopolymer for enhancing biological properties. An alginate hydrogel was injected to form a fiber scaffold with shape-tunability that was then coated with a thin silicate layer with various sol-gel compositions. The silicate/alginate scaffold could release calcium and silicate ions, and in particular, silicate ion release was highly sustainable for over one week at therapeutically relevant levels. The ionic release was highly effective in stimulating the mRNA expression of angiogenic markers (VEGF, KDR, eNOS, bFGF, and HIF1-α) in endothelial cells (HUVECs). Moreover, the in vitro tubular networking of cells was significantly enhanced (1.5 times). In vivo implantation in subcutaneous tissue revealed more pronounced blood vessel formation around the silicate-shelled scaffolds than around silicate-free scaffolds. The presence of a silicate shell was also shown to accelerate acellular mineral (hydroxyapatite) formation. The cellular osteogenesis potential of the silicate/alginate scaffold was further proven by the enhanced expression of osteogenic genes (Col1a1, ALP and OCN). When implanted in a rat calvarium defect, the silicate-shelled scaffold demonstrated significantly improved bone formation (2-3 times higher in bone volume and density) with a concurrent sign of proangiogenesis. This work highlights that the surface-layering of silicate composition is an effective approach for improving the bone regeneration capacity of polymeric hydrogel scaffolds by stimulating ion-induced angiogenesis and providing bone bioactivity to the surface.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Silicatos/química , Andamios del Tejido/química , Alginatos/química , Animales , Biomarcadores/metabolismo , Regeneración Ósea/efectos de los fármacos , Calcio/química , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Porosidad , Ratas , Ratas Sprague-Dawley
17.
Acta Biomater ; 99: 181-195, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446049

RESUMEN

With donor organs not readily available, the need for a tissue-engineered oesophagus remains high, particularly for congenital childhood conditions such as atresia. Previous attempts have not been successful, and challenges remain. Small intestine submucosa (SIS) is an acellular matrix material with good biological properties; however, as is common with these types of materials, they demonstrate poor mechanical properties. In this work, electrospinning was performed to mechanically reinforce tubular SIS with polylactic-co-glycolic acid (PLGA) nanofibres. It was hypothesised that if attachment could be achieved between the two materials, then this would (i) improve the SIS mechanical properties, (ii) facilitate smooth muscle cell alignment to support directional growth of muscle cells and (iii) allow for the delivery of bioactive molecules (VEGF in this instance). Through a relatively simple multistage process, adhesion between the layers was achieved without chemically altering the SIS. It was also found that altering mandrel rotation speed affected the alignment of the PLGA nanofibres. SIS-PLGA scaffolds performed mechanically better than SIS alone; yield stress improvement was 200% and 400% along the longitudinal and circumferential directions, respectively. Smooth muscle cells cultured on the aligned fibres showed resultant unidirectional alignment. In vivo the SIS-PLGA scaffolds demonstrated limited foreign body reaction judged by the type and proportion of immune cells present and lack of fibrous encapsulation. The scaffolds remained intact at 4 weeks in vivo, and good cellular infiltration was observed. The incorporation of VEGF within SIS-PLGA scaffolds increased the blood vessel density of the surrounding tissues, highlighting the possible stimulation of endothelialisation by angiogenic factor delivery. Overall, the designed SIS-PLGA-VEGF hybrid scaffolds might be used as a potential matrix platform for oesophageal tissue engineering. In addition to this, achieving improved attachment between layers of acellular matrix materials and electrospun fibre layers offers the potential utility in other applications. STATEMENT OF SIGNIFICANCE: Because of its multi-layered nature and complex structure, the oesophagus tissue poses several challenges for successful clinical grafting. Therefore, it is promising to utilise tissue engineering strategies to mimic and form structural compartments for its recovery. In this context, we investigated the use of tubular small intestine submucosa (SIS) reinforced with polylactic-co-glycolic acid (PLGA) nanofibres by using electrospinning and also, amongst other parameters, the integrity of the bilayered structure created. This was carried out to facilitate smooth muscle cell alignment, support directional growth of muscle cells and allow the delivery of bioactive molecules (VEGF in this study). We evaluated this approach by using in vitro and in vivo models to determine the efficacy of this new system.


Asunto(s)
Esófago/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Materiales Biocompatibles , Adhesión Celular/efectos de los fármacos , Supervivencia Celular , Sistemas de Liberación de Medicamentos , Electroquímica , Humanos , Microscopía Electrónica de Rastreo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Nanofibras/química , Neovascularización Fisiológica , Estrés Mecánico , Porcinos , Resistencia a la Tracción , Factor A de Crecimiento Endotelial Vascular/farmacología
18.
ACS Biomater Sci Eng ; 5(11): 6054-6062, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33405659

RESUMEN

Calcium phosphate glasses are a promising new generation of biomaterials that can simultaneously induce tissue regeneration and controlled release of therapeutic molecules. In this work, novel calcium phosphate glasses containing 0, 2, 4, and 6 mol % Cu2+ were synthesized via room temperature precipitation reaction in aqueous solution. The effect of Cu2+ addition on the glass properties and structure was investigated using thermal analysis, 31P solid-state MAS NMR, Raman spectroscopy, and X-ray diffraction. All glasses crystallize at temperature >500 °C and are mainly formed by Q1 groups. The release of P, Ca, and Cu in solution over time was monitored via inductively coupled plasma-optical emission spectroscopy. It was found that with increasing Cu content, the amount of P and Ca released decreases whereas the amount of Cu released increases. The effect of Cu2+ release on the antibacterial activity against S. aureus, a bacterial strain commonly found in postsurgery infections, has been investigated. The addition of copper has been shown to infer the glasses antibacterial properties. As expected, the antibacterial activity of the glasses increases with increasing Cu2+ content. Cytocompatibility was assessed by seeding human osteoblast-like osteosarcoma cells Saos-2 (HTB85) on the glass particles. A significant increase in cell number was observed in all the glasses investigated. The copper-doped calcium phosphate glasses have proven to be multifunctional, as they combine bone regenerative properties with antibacterial activity. Therefore, they have great potential as antibacterial bioresorbable materials for hard tissue regeneration.

19.
J Mater Sci Mater Med ; 29(12): 179, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30506294

RESUMEN

This study validated the utilization of triacylglycerides (TAGs) by Pseudomonas mendocina CH50, a wild type strain, resulting in the production of novel mcl-PHAs with unique physical properties. A PHA yield of 58% dcw was obtained using 20 g/L of coconut oil. Chemical and structural characterisation confirmed that the mcl-PHA produced was a terpolymer comprising of three different repeating monomer units, 3-hydroxyoctanoate, 3-hydroxydecanoate and 3-hydroxydodecanoate or P(3HO-3HD-3HDD). Bearing in mind the potential of P(3HO-3HD-3HDD) in biomedical research, especially in neural tissue engineering, in vitro biocompatibility studies were carried out using NG108-15 (neuronal) cells. Cell viability data confirmed that P(3HO-3HD-3HDD) supported the attachment and proliferation of NG108-15 and was therefore confirmed to be biocompatible in nature and suitable for neural regeneration.


Asunto(s)
Aceite de Coco , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/química , Pseudomonas mendocina/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ensayo de Materiales , Ratones , Ratas
20.
J Tissue Eng Regen Med ; 12(1): e495-e512, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27689781

RESUMEN

Cardiac tissue engineering (CTE) is currently a prime focus of research because of an enormous clinical need. In the present work, a novel functional material, poly(3-hydroxyoctanoate), P(3HO), a medium chain-length polyhydroxyalkanoate (PHA), produced using bacterial fermentation, was studied as a new potential material for CTE. Engineered constructs with improved mechanical properties, crucial for supporting the organ during new tissue regeneration, and enhanced surface topography, to allow efficient cell adhesion and proliferation, were fabricated. Results showed that the mechanical properties of the final patches were close to that of cardiac muscle. Biocompatibility of neat P(3HO) patches, assessed using neonatal ventricular rat myocytes (NVRM), showed that the polymer was as good as collagen in terms of cell viability, proliferation and adhesion. Enhanced cell adhesion and proliferation properties were observed when porous and fibrous structures were incorporated into the patches. In addition, no deleterious effect was observed on adult cardiomyocyte contraction when cardiomyocytes were seeded on the P(3HO) patches. Hence, P(3HO)-based multifunctional cardiac patches are promising constructs for efficient CTE. This work will have a positive impact on the development of P(3HO) and other PHAs as a novel new family of biodegradable functional materials with huge potential in a range of different biomedical applications, particularly CTE, leading to further interest and exploitation of these materials. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Caprilatos/farmacología , Corazón/fisiología , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Corazón/efectos de los fármacos , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Ratas , Temperatura , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA