Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cells ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38920664

RESUMEN

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Asunto(s)
Hepacivirus , Poliaminas , Prolina , Urea , Replicación Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiología , Hepacivirus/efectos de los fármacos , Poliaminas/metabolismo , Urea/metabolismo , Urea/farmacología , Replicación Viral/efectos de los fármacos , Arginasa/metabolismo , Antivirales/farmacología , Antivirales/metabolismo , Hepatitis C/metabolismo , Hepatitis C/virología , Línea Celular Tumoral , Prolina Oxidasa/metabolismo
2.
Biomolecules ; 13(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37189460

RESUMEN

Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.


Asunto(s)
Carcinoma Hepatocelular , Hepatocitos , Neoplasias Hepáticas , Poliaminas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilación de la Expresión Génica , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Redes y Vías Metabólicas , Oxidación-Reducción , Poliaminas/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Urea
3.
Molecules ; 28(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110802

RESUMEN

Bacterial cystathionine γ-lyase (bCSE) is the main producer of H2S in pathogenic bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, etc. The suppression of bCSE activity considerably enhances the sensitivity of bacteria to antibiotics. Convenient methods for the efficient synthesis of gram quantities of two selective indole-based bCSE inhibitors, namely (2-(6-bromo-1H-indol-1-yl)acetyl)glycine (NL1), 5-((6-bromo-1H-indol-1-yl)methyl)- 2-methylfuran-3-carboxylic acid (NL2), as well as a synthetic method for preparation 3-((6-(7-chlorobenzo[b]thiophen-2-yl)-1H-indol-1-yl)methyl)- 1H-pyrazole-5-carboxylic acid (NL3), have been developed. The syntheses are based on the use of 6-bromoindole as the main building block for all three inhibitors (NL1, NL2, and NL3), and the designed residues are assembled at the nitrogen atom of the 6-bromoindole core or by the substitution of the bromine atom in the case of NL3 using Pd-catalyzed cross-coupling. The developed and refined synthetic methods would be significant for the further biological screening of NL-series bCSE inhibitors and their derivatives.


Asunto(s)
Antibacterianos , Cistationina gamma-Liasa , Antibacterianos/química , Indoles/química , Bacterias
4.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37107349

RESUMEN

Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.

5.
Molecules ; 28(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36770901

RESUMEN

The fast spread of bacteria that are resistant to many classes of antibiotics (multidrug resistant) is a global threat to human and animal health with a worrisome scenario ahead. Novel therapeutical strategies are of crucial importance to combat this phenomenon. For this purpose, we investigated the antimicrobial properties of the naturally occurring tripeptide Bialaphos and a dipeptide L-leucyl-L-phosphinoithricin, the synthesis and diastereomers separation of which are herein described. We demonstrate that these compounds are effective on clinical isolates of the human pathogen Klebsiella pneumoniae, causing hospital-acquired and community-acquired infections. The tested isolates were remarkable for their resistance to more than 20 commercial antibiotics of different classes. Based on previous literature data and our experiments consisting of glutamine supplementation, we suggest that both compounds release phosphinothricin-a well-known nanomolar inhibitor of glutamine synthetase-after their penetration in the bacterial cells; and, in this way, exert their antibacterial effect by negatively affecting nitrogen assimilation in this pathogen.


Asunto(s)
Antiinfecciosos , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
6.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36428704

RESUMEN

Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.

7.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925399

RESUMEN

Recent evidence suggests that fibrotic liver injury in patients with chronic hepatitis C correlates with cellular senescence in damaged liver tissue. However, it is still unclear how senescence can affect replication of the hepatitis C virus (HCV). In this work, we report that an inhibitor of cyclin-dependent kinases 4/6, palbociclib, not only induced in hepatoma cells a pre-senescent cellular phenotype, including G1 arrest in the cell cycle, but also accelerated viral replicon multiplication. Importantly, suppression of HCV replication by direct acting antivirals (DAAs) was barely affected by pre-senescence induction, and vice versa, the antiviral activities of host-targeting agents (HTAs), such as inhibitors of human histone deacetylases (HDACi), produced a wide range of reactions-from a dramatic reduction to a noticeable increase. It is very likely that under conditions of the G1 arrest in the cell cycle, HDACi exhibit their actual antiviral potency, since their inherent anticancer activity that complicates the interpretation of test results is minimized.


Asunto(s)
Senescencia Celular/fisiología , Hepacivirus/metabolismo , Replicación Viral/fisiología , Antivirales/farmacología , Carcinoma Hepatocelular/metabolismo , Línea Celular , Genotipo , Hepacivirus/genética , Hepacivirus/patogenicidad , Hepatitis C/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Hígado/patología , Fenotipo , Piperazinas/farmacología , Piridinas/farmacología , Factor de Crecimiento Transformador beta1/metabolismo
8.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052601

RESUMEN

Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.

9.
Molecules ; 25(15)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32717979

RESUMEN

Widespread latent herpes viral infections within a population can lead to the development of co-infections in HIV-infected patients. These infections are not particularly dangerous for healthy individuals and often occur with minimal symptoms, but for those who are immunocompromised, these infections can accelerate the acute phase of HIV infection and AIDS. Thus, the idea of designing compounds that could combine activity against HIV and co-infections would seem promising. In that regard, eleven compounds were synthesized that represent conjugates of non-nucleoside HIV reverse transcriptase inhibitors and nucleoside inhibitors of the herpes family viruses with the hope that these novel heterodimers will result in dual activity against HIV and concomitant herpes virus infections.


Asunto(s)
Antivirales/síntesis química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Uracilo/química , Antivirales/química , Antivirales/farmacología , Línea Celular , Diseño de Fármacos , VIH/efectos de los fármacos , VIH/enzimología , VIH/fisiología , Herpesviridae/efectos de los fármacos , Herpesviridae/fisiología , Humanos , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/química , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Latencia del Virus/efectos de los fármacos
10.
Biomolecules ; 10(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155745

RESUMEN

The biogenic polyamines, spermine, spermidine (Spd) and putrescine (Put) are present at micro-millimolar concentrations in eukaryotic and prokaryotic cells (many prokaryotes have no spermine), participating in the regulation of cellular proliferation and differentiation. In mammalian cells Put is formed exclusively from L-ornithine by ornithine decarboxylase (ODC) and many potent ODC inhibitors are known. In bacteria, plants, and fungi Put is synthesized also from agmatine, which is formed from L-arginine by arginine decarboxylase (ADC). Here we demonstrate that the isosteric hydroxylamine analogue of agmatine (AO-Agm) is a new and very potent (IC50 3•10-8 M) inhibitor of E. coli ADC. It was almost two orders of magnitude less potent towards E. coli ODC. AO-Agm decreased polyamine pools and inhibited the growth of DU145 prostate cancer cells only at high concentration (1 mM). Growth inhibitory analysis of the Acremonium chrysogenum demonstrated that the wild type (WT) strain synthesized Put only from L-ornithine, while the cephalosporin C high-yielding strain, in which the polyamine pool is increased, could use both ODC and ADC to produce Put. Thus, AO-Agm is an important addition to the set of existing inhibitors of the enzymes of polyamine biosynthesis, and an important instrument for investigating polyamine biochemistry.


Asunto(s)
Acremonium/química , Agmatina , Carboxiliasas , Proteínas de Escherichia coli , Escherichia coli/enzimología , Agmatina/análogos & derivados , Agmatina/química , Animales , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Masculino , Ratones
11.
Oxid Med Cell Longev ; 2019: 3196140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31687077

RESUMEN

Hepatitis C virus (HCV) triggers massive production of reactive oxygen species (ROS) and affects expression of genes encoding ROS-scavenging enzymes. Multiple lines of evidence show that levels of ROS production contribute to the development of various virus-associated pathologies. However, investigation of HCV redox biology so far remained in the paradigm of oxidative stress, whereas no attention was given to the identification of redox switches among viral proteins. Here, we report that one of such redox switches is the NS5B protein that exhibits RNA-dependent RNA polymerase (RdRp) activity. Treatment of the recombinant protein with reducing agents significantly increases its enzymatic activity. Moreover, we show that the NS5B protein is subjected to S-glutathionylation that affects cysteine residues 89, 140, 170, 223, 274, 521, and either 279 or 295. Substitution of these cysteines except C89 and C223 with serine residues led to the reduction of the RdRp activity of the recombinant protein in a primer-dependent assay. The recombinant protein with a C279S mutation was almost inactive in vitro and could not be activated with reducing agents. In contrast, cysteine substitutions in the NS5B region in the context of a subgenomic replicon displayed opposite effects: most of the mutations enhanced HCV replication. This difference may be explained by the deleterious effect of oxidation of NS5B cysteine residues in liver cells and by the protective role of S-glutathionylation. Based on these data, redox-sensitive posttranslational modifications of HCV NS5B and other proteins merit a more detailed investigation and analysis of their role(s) in the virus life cycle and associated pathogenesis.


Asunto(s)
Cisteína/metabolismo , Glutatión/metabolismo , Hepacivirus/enzimología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Sustitución de Aminoácidos , Línea Celular Tumoral , Genoma Viral , Hepacivirus/genética , Humanos , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Replicón/genética , Serina/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
12.
J Med Chem ; 62(24): 11335-11347, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31765147

RESUMEN

The biogenic polyamines, spermine (Spm) and spermidine, are organic polycations present in millimolar concentrations in all eukaryotic cells participating in the regulation of vital cellular functions including proliferation and differentiation. The design and biochemical evaluation of polyamine analogues are cornerstones of polyamine research. Here we synthesized and studied novel C-methylated Spm analogues: 2,11-dimethylspermine (2,11-Me2Spm), 3,10-dimethylspermine (3,10-Me2Spm), 2-methylspermine, and 2,2-dimethylspermine. The tested analogues overcame growth arrest induced by a 72 h treatment with α-difluoromethylornithine, an ornithine decarboxylase (ODC) inhibitor, and entered into DU145 cells via the polyamine transporter. 3,10-Me2Spm was a poor substrate of spermine oxidase and spermidine/spermine-N1-acetyltransferase (SSAT) when compared with 2,11-Me2Spm, thus resembling 1,12-dimethylspermine, which lacks the substrate properties required for the SSAT reaction. The antizyme (OAZ1)-mediated downregulation of ODC and inhibition of polyamine transport are crucial in the maintenance of polyamine homeostasis. Interestingly, 3,10-Me2Spm was found to be the first Spm analogue that did not induce OAZ1 and, consequently, was a weak downregulator of ODC activity in DU145 cells.


Asunto(s)
Inhibidores de la Ornitina Descarboxilasa/farmacología , Ornitina Descarboxilasa/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Poliaminas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Espermina/análogos & derivados , Espermina/metabolismo , Transporte Biológico , Metilación de ADN , Humanos , Masculino , Ornitina Descarboxilasa/metabolismo , Neoplasias de la Próstata/metabolismo , Especificidad por Sustrato , Células Tumorales Cultivadas , Poliamino Oxidasa
13.
Cells ; 8(3)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30823485

RESUMEN

HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.


Asunto(s)
Estrés Oxidativo , Vacunas de ADN/inmunología , Proteínas del Núcleo Viral/inmunología , Secuencia de Aminoácidos , Animales , Femenino , Células HEK293 , Humanos , Inmunidad Celular , Inmunización , Interferón gamma/biosíntesis , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas Mutantes/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas del Núcleo Viral/química
14.
Biochimie ; 158: 82-89, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30578923

RESUMEN

Leukemic cells from different patients exhibit different sensitivity to anticancer drugs including doxorubicin (DOX). Resistance to chemotherapy decreases efficacy of the treatment and promotes cancer recurrence and metastases. One of the approaches to overcome drug resistance includes E2F1-mediated regulation of the р73 protein that belongs to the р53 family. Its ΔNp73 isoform exhibits pro-oncogenic effects, and TAp73 - anti-oncogenic effects. Human cytomegalovirus (HCMV), often found in tumors, suppresses pro-apoptotic pathways and E2F1/p73 in particular. The activity of E2F1 and p73 transcription factors is linked to metabolism of biogenic polyamines. Therefore, it could be suggested that compounds that target polyamine-metabolizing enzymes can sensitize HCMV-infected hematological malignancies to doxorubicin. Here we report that HCMV infection of ТНР-1 monocytic leukemic cells considerably elevates E2F1 levels and shifts the balance between the р73 isoforms towards ΔNp73 leading to survival of DOX-treated leukemic cells. In contrast, MDL72.527, an inhibitor of polyamine catabolism, decreases ΔNp73/ТАр73 ratio and thus restores sensitivity of the cells to DOX. Our findings indicate the combination of doxorubicin and MDL72.527 may present a novel strategy for therapy of leukemia in patients with and without HCMV infection.


Asunto(s)
Poliaminas Biogénicas/metabolismo , Infecciones por Citomegalovirus/tratamiento farmacológico , Citomegalovirus/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Leucemia Monocítica Aguda/tratamiento farmacológico , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Humanos , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/metabolismo , Leucemia Monocítica Aguda/patología , Células THP-1 , Proteína Tumoral p73/metabolismo
15.
Cells ; 7(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567412

RESUMEN

Tumorigenesis is accompanied by the metabolic adaptation of cells to support enhanced proliferation rates and to optimize tumor persistence and amplification within the local microenvironment. In particular, cancer cells exhibit elevated levels of biogenic polyamines. Inhibitors of polyamine biosynthesis and inducers of their catabolism have been evaluated as antitumor drugs, however, their efficacy and safety remain controversial. Our goal was to investigate if drug-induced modulation of polyamine metabolism plays a role in dedifferentiation using differentiated human hepatocyte-like HepaRG cell cultures. N¹,N11-diethylnorspermine (DENSpm), a potent inducer of polyamine catabolism, triggered an epithelial-mesenchymal transition (EMT)-like dedifferentiation in HepaRG cultures, as shown by down-regulation of mature hepatocytes markers and upregulation of classical EMT markers. Albeit the fact that polyamine catabolism produces H2O2, DENSpm-induced de-differentiation was not affected by antioxidants. Use of a metabolically stable spermidine analogue showed furthermore, that spermidine is a key regulator of hepatocyte differentiation. Comparative transcriptome analyses revealed, that the DENSpm-triggered dedifferentiation of HepaRG cells was accompanied by dramatic metabolic adaptations, exemplified by down-regulation of the genes of various metabolic pathways and up-regulation of the genes involved in signal transduction pathways. These results demonstrate that polyamine metabolism is tightly linked to EMT and differentiation of liver epithelial cells.

16.
Molecules ; 23(10)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332788

RESUMEN

Here we report the synthesis and biological activity of new 5'-norcarbocyclic derivatives of bicyclic pyrrolo- and furano[2,3-d]pyrimidines with different substituents in the heterocyclic ring. Lead compound 3i, containing 6-pentylphenyl substituent, displays inhibitory activity with respect to a number of tumor cells with a moderate selectivity index value. Compound 3i induces cell death by the apoptosis pathway with the dissipation of mitochondrial potential.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Células A549 , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Ratones , Estructura Molecular , Pirimidinas/química , Relación Estructura-Actividad
17.
Int J Mol Sci ; 19(4)2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29673197

RESUMEN

Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H2O2 production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.


Asunto(s)
Poliaminas Biogénicas/metabolismo , Estrés Oxidativo , Pliegue de Proteína , Especies Reactivas de Oxígeno/metabolismo , Virosis/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Peróxido de Hidrógeno/metabolismo , Neoplasias/metabolismo , Transducción de Señal
18.
Int J Mol Sci ; 18(11)2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113144

RESUMEN

The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.


Asunto(s)
Carcinoma Hepatocelular/genética , Hepacivirus/genética , Neoplasias Hepáticas/genética , Proteínas no Estructurales Virales/genética , Apoptosis/genética , Autofagia/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Caspasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Genoma Viral/genética , Hepacivirus/patogenicidad , Hepatitis C/genética , Hepatitis C/virología , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/virología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Transducción de Señal , Transfección , Replicación Viral/genética
19.
Biochem Biophys Res Commun ; 483(2): 904-909, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082202

RESUMEN

Chronic infection with hepatitis C virus (HCV) induces liver fibrosis and cancer. In particular metabolic alterations and associated oxidative stress induced by the virus play a key role in disease progression. Albeit the pivotal role of biogenic polyamines spermine and spermidine in the regulation of liver metabolism and function and cellular control of redox homeostasis, their role in the viral life cycle has not been studied so far. Here we show that in cell lines expressing two viral proteins, capsid and the non-structural protein 5A, expression of the two key enzymes of polyamine biosynthesis and degradation, respectively, ornithine decarboxylase (ODC) and spermidine/spermine-N1-acetyl transferase (SSAT), increases transiently. In addition, both HCV core and NS5A induce sustained expression of spermine oxidase (SMO), an enzyme that catalyzes conversion of spermine into spermidine. Human hepatoma Huh7 cells harboring a full-length HCV replicon exhibited suppressed ODC and SSAT levels and elevated levels of SMO leading to decreased intracellular concentrations of spermine and spermidine. Thus, role of HCV-driven alterations of polyamine metabolism in virus replication and development of HCV-associated liver pathologies should be explored in future.


Asunto(s)
Poliaminas Biogénicas/metabolismo , Hepacivirus/fisiología , Hepacivirus/patogenicidad , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Línea Celular , Regulación Enzimológica de la Expresión Génica , Hepacivirus/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Proteínas del Núcleo Viral/fisiología , Proteínas no Estructurales Virales/fisiología , Replicación Viral/fisiología , Poliamino Oxidasa
20.
Oncotarget ; 8(3): 3895-3932, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27965466

RESUMEN

Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.


Asunto(s)
Hepatitis B/metabolismo , Hepatitis C/metabolismo , Neoplasias Hepáticas/virología , Estrés Oxidativo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA