Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Epilepsia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990127

RESUMEN

OBJECTIVE: Anterior temporal lobe resection (ATLR) effectively controls seizures in medically refractory temporal lobe epilepsy but risks significant episodic memory decline. Beyond 1 year postoperatively, the influence of preoperative clinical factors on episodic memory and long-term network plasticity remain underexplored. Ten years post-ATLR, we aimed to determine biomarkers of successful memory network reorganization and establish presurgical features' lasting impact on memory function. METHODS: Twenty-five ATLR patients (12 left-sided) and 10 healthy controls underwent a memory-encoding functional magnetic resonance imaging paradigm alongside neuropsychometry 10 years postsurgery. Generalized psychophysiological interaction analyses modeled network functional connectivity of words/faces remembered, seeding from the medial temporal lobes (MTLs). Differences in successful memory connectivity were assessed between controls and left/right ATLR. Multivariate regressions and mixed-effect models probed preoperative phenotypes' effects on long-term memory outcomes. RESULTS: Ten years post-ATLR, lower baseline functioning (verbal and performance intelligence quotient) and a focal memory impairment preoperatively predicted worse long-term memory outcomes. Poorer verbal memory was significantly associated with longer epilepsy duration and earlier onset age. Relative to controls, successful word and face encoding involved increased functional connectivity from both or remnant MTL seeds and contralesional parahippocampus/hippocampus after left/right ATLR. Irrespective of surgical laterality, successful memory encoding correlated with increased MTL-seeded connectivity to frontal (bilateral insula, right anterior cingulate), right parahippocampal, and bilateral fusiform gyri. Ten years postsurgery, better memory performance was correlated with contralateral frontal plasticity, which was disrupted with longer epilepsy duration. SIGNIFICANCE: Our findings underscore the enduring nature of functional network reorganizations to provide long-term cognitive support. Ten years post-ATLR, successful memory formation featured stronger connections near resected areas and contralateral regions. Preoperative network disruption possibly influenced effectiveness of postoperative plasticity. These findings are crucial for enhancing long-term memory prediction and strategies for lasting memory rehabilitation.

2.
J Neurol ; 271(7): 4158-4167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583105

RESUMEN

OBJECTIVE: The aim of this study was to explore the relation of language functional MRI (fMRI)-guided tractography with postsurgical naming decline in people with temporal lobe epilepsy (TLE). METHODS: Twenty patients with unilateral TLE (9 left) were studied with auditory and picture naming functional MRI tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole-brain fibre tractography. Clinical naming performance was assessed preoperatively, 4 months, and 12 months following temporal lobe resection. Volumes of white matter language tracts in both hemispheres as well as tract volume laterality indices were explored as moderators of postoperative naming decline using Pearson correlations and multiple linear regression with other clinical variables. RESULTS: Larger volumes of white matter language tracts derived from auditory and picture naming maxima in the hemisphere of subsequent surgery as well as stronger lateralization of picture naming tract volumes to the side of surgery correlated with greater language decline, which was independent of fMRI lateralization status. Multiple regression for picture naming tract volumes was associated with a significant decline of naming function with 100% sensitivity and 93% specificity at both short-term and long-term follow-up. INTERPRETATION: Naming fMRI-guided white matter language tract volumes relate to postoperative naming decline after temporal lobe resection in people with TLE. This can assist stratification of surgical outcome and minimize risk of postoperative language deficits in TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Lóbulo Temporal , Sustancia Blanca , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Persona de Mediana Edad , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Imagen de Difusión Tensora , Adulto Joven , Trastornos del Lenguaje/etiología , Trastornos del Lenguaje/diagnóstico por imagen , Trastornos del Lenguaje/fisiopatología , Lateralidad Funcional/fisiología , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología , Lenguaje , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/cirugía
4.
Epilepsy Res ; 185: 106971, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35810570

RESUMEN

The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE..


Asunto(s)
Epilepsia del Lóbulo Temporal , Corteza Piriforme , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/cirugía , Hipocampo/diagnóstico por imagen , Hipocampo/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Lóbulo Temporal
5.
Ann Neurol ; 91(1): 131-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741484

RESUMEN

OBJECTIVE: Postoperative memory decline is an important consequence of anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), and the extent of resection may be a modifiable factor. This study aimed to define optimal resection margins for cognitive outcome while maintaining a high rate of postoperative seizure freedom. METHODS: This cohort study evaluated the resection extent on postoperative structural MRI using automated voxel-based methods and manual measurements in 142 consecutive patients with unilateral drug refractory TLE (74 left, 68 right TLE) who underwent standard ATLR. RESULTS: Voxel-wise analyses revealed that postsurgical verbal memory decline correlated with resections of the posterior hippocampus and inferior temporal gyrus, whereas larger resections of the fusiform gyrus were associated with worsening of visual memory in left TLE. Limiting the posterior extent of left hippocampal resection to 55% reduced the odds of significant postoperative verbal memory decline by a factor of 8.1 (95% CI 1.5-44.4, p = 0.02). Seizure freedom was not related to posterior resection extent, but to the piriform cortex removal after left ATLR. In right TLE, variability of the posterior extent of resection was not associated with verbal and visual memory decline or seizures after surgery. INTERPRETATION: The extent of surgical resection is an independent and modifiable risk factor for cognitive decline and seizures after left ATLR. Adapting the posterior extent of left ATLR might optimize postoperative outcome, with reduced risk of memory impairment while maintaining comparable seizure-freedom rates. The current, more lenient, approach might be appropriate for right ATLR. ANN NEUROL 2022;91:131-144.


Asunto(s)
Lobectomía Temporal Anterior/efectos adversos , Lobectomía Temporal Anterior/métodos , Epilepsia del Lóbulo Temporal/cirugía , Complicaciones Posoperatorias/prevención & control , Adolescente , Adulto , Estudios de Cohortes , Epilepsia Refractaria/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/etiología , Convulsiones/etiología , Convulsiones/prevención & control , Adulto Joven
6.
Br J Neurosurg ; : 1-6, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406102

RESUMEN

BACKGROUND: The piriform cortex (PC) occupies both banks of the endorhinal sulcus and has an important role in the pathophysiology of temporal lobe epilepsy (TLE). A recent study showed that resection of more than 50% of PC increased the odds of becoming seizure free by a factor of 16. OBJECTIVE: We report the feasibility of manual segmentation of PC and application of the Geodesic Information Flows (GIF) algorithm to automated segmentation, to guide resection. METHODS: Manual segmentation of PC was performed by two blinded independent examiners in 60 patients with TLE (55% Left TLE, 52% female) with a median age of 35 years (IQR, 29-47 years) and 20 controls (60% Women) with a median age of 39.5 years (IQR, 31-49). The GIF algorithm was used to create an automated pipeline for parcellating PC which was used to guide excision as part of temporal lobe resection for TLE. RESULTS: Right PC was larger in patients and controls. Parcellation of PC was used to guide anterior temporal lobe resection, with subsequent seizure freedom and no visual field or language deficit. CONCLUSION: Reliable segmentation of PC is feasible and can be applied prospectively to guide neurosurgical resection that increases the chances of a good outcome from temporal lobe resection for TLE.

7.
Brain ; 143(11): 3262-3272, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33179036

RESUMEN

Focal epilepsy in adults is associated with progressive atrophy of the cortex at a rate more than double that of normal ageing. We aimed to determine whether successful epilepsy surgery interrupts progressive cortical thinning. In this longitudinal case-control neuroimaging study, we included subjects with unilateral temporal lobe epilepsy (TLE) before (n = 29) or after (n = 56) anterior temporal lobe resection and healthy volunteers (n = 124) comparable regarding age and sex. We measured cortical thickness on paired structural MRI scans in all participants and compared progressive thinning between groups using linear mixed effects models. Compared to ageing-related cortical thinning in healthy subjects, we found progressive cortical atrophy on vertex-wise analysis in TLE before surgery that was bilateral and localized beyond the ipsilateral temporal lobe. In these regions, we observed accelerated annualized thinning in left (left TLE 0.0192 ± 0.0014 versus healthy volunteers 0.0032 ± 0.0013 mm/year, P < 0.0001) and right (right TLE 0.0198 ± 0.0016 versus healthy volunteers 0.0037 ± 0.0016 mm/year, P < 0.0001) presurgical TLE cases. Cortical thinning in these areas was reduced after surgical resection of the left (0.0074 ± 0.0016 mm/year, P = 0.0006) or right (0.0052 ± 0.0020 mm/year, P = 0.0006) anterior temporal lobe. Directly comparing the post- versus presurgical TLE groups on vertex-wise analysis, the areas of postoperatively reduced thinning were in both hemispheres, particularly, but not exclusively, in regions that were affected preoperatively. Participants who remained completely seizure-free after surgery had no more progressive thinning than that observed during normal ageing. Those with postoperative seizures had small areas of continued accelerated thinning after surgery. Thus, successful epilepsy surgery prevents progressive cortical atrophy that is observed in TLE and may be potentially neuroprotective. This effect was more pronounced in those who remained seizure-free after temporal lobe resection, normalizing the rate of atrophy to that of normal ageing. These results provide evidence of epilepsy surgery preventing further cerebral damage and provide incentives for offering early surgery in refractory TLE.


Asunto(s)
Adelgazamiento de la Corteza Cerebral/prevención & control , Epilepsia del Lóbulo Temporal/cirugía , Procedimientos Neuroquirúrgicos/métodos , Adulto , Anciano , Atrofia , Estudios de Casos y Controles , Adelgazamiento de la Corteza Cerebral/diagnóstico por imagen , Adelgazamiento de la Corteza Cerebral/patología , Estudios de Cohortes , Progresión de la Enfermedad , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Femenino , Lateralidad Funcional , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Estudios Prospectivos , Convulsiones/etiología , Convulsiones/prevención & control , Adulto Joven
8.
Ann Neurol ; 88(1): 170-182, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32379905

RESUMEN

OBJECTIVE: Cognitive problems, especially disturbances in episodic memory, and hippocampal sclerosis are common in temporal lobe epilepsy (TLE), but little is known about the relationship of hippocampal morphology with memory. We aimed to relate hippocampal surface-shape patterns to verbal and visual learning. METHODS: We analyzed hippocampal surface shapes on high-resolution magnetic resonance images and the Adult Memory and Information Processing Battery in 145 unilateral refractory TLE patients undergoing epilepsy surgery, a validation set of 55 unilateral refractory TLE patients, and 39 age- and sex-matched healthy volunteers. RESULTS: Both left TLE (LTLE) and right TLE (RTLE) patients had lower verbal (LTLE 44 ± 11; RTLE 45 ± 10) and visual learning (LTLE 34 ± 8, RTLE 30 ± 8) scores than healthy controls (verbal 58 ± 8, visual 39 ± 6; p < 0.001). Verbal learning was more impaired the greater the atrophy of the left superolateral hippocampal head. In contrast, visual memory was worse with greater bilateral inferomedial hippocampal atrophy. Postsurgical verbal memory decline was more common in LTLE than in RTLE (reliable change index in LTLE 27% vs RTLE 7%, p = 0.006), whereas there were no differences in postsurgical visual memory decline between those groups. Preoperative atrophy of the left hippocampal tail predicted postsurgical verbal memory decline. INTERPRETATION: Memory deficits in TLE are associated with specific morphological alterations of the hippocampus, which could help stratify TLE patients into those at high versus low risk of presurgical or postsurgical memory deficits. This knowledge could improve planning and prognosis of selective epilepsy surgery and neuropsychological counseling in TLE. ANN NEUROL 2020 ANN NEUROL 2020;88:170-182.


Asunto(s)
Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Trastornos de la Memoria/diagnóstico por imagen , Memoria Episódica , Adulto , Mapeo Encefálico , Epilepsia del Lóbulo Temporal/complicaciones , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tamaño de los Órganos/fisiología
9.
Epilepsia ; 60(6): 1054-1068, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31135062

RESUMEN

Structural magnetic resonance imaging (MRI) is of fundamental importance to the diagnosis and treatment of epilepsy, particularly when surgery is being considered. Despite previous recommendations and guidelines, practices for the use of MRI are variable worldwide and may not harness the full potential of recent technological advances for the benefit of people with epilepsy. The International League Against Epilepsy Diagnostic Methods Commission has thus charged the 2013-2017 Neuroimaging Task Force to develop a set of recommendations addressing the following questions: (1) Who should have an MRI? (2) What are the minimum requirements for an MRI epilepsy protocol? (3) How should magnetic resonance (MR) images be evaluated? (4) How to optimize lesion detection? These recommendations target clinicians in established epilepsy centers and neurologists in general/district hospitals. They endorse routine structural imaging in new onset generalized and focal epilepsy alike and describe the range of situations when detailed assessment is indicated. The Neuroimaging Task Force identified a set of sequences, with three-dimensional acquisitions at its core, the harmonized neuroimaging of epilepsy structural sequences-HARNESS-MRI protocol. As these sequences are available on most MR scanners, the HARNESS-MRI protocol is generalizable, regardless of the clinical setting and country. The Neuroimaging Task Force also endorses the use of computer-aided image postprocessing methods to provide an objective account of an individual's brain anatomy and pathology. By discussing the breadth and depth of scope of MRI, this report emphasizes the unique role of this noninvasive investigation in the care of people with epilepsy.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/terapia , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Adulto , Comités Consultivos , Niño , Consenso , Humanos
10.
JAMA Neurol ; 76(6): 690-700, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855662

RESUMEN

Importance: A functional area associated with the piriform cortex, termed area tempestas, has been implicated in animal studies as having a crucial role in modulating seizures, but similar evidence is limited in humans. Objective: To assess whether removal of the piriform cortex is associated with postoperative seizure freedom in patients with temporal lobe epilepsy (TLE) as a proof-of-concept for the relevance of this area in human TLE. Design, Setting, and Participants: This cohort study used voxel-based morphometry and volumetry to assess differences in structural magnetic resonance imaging (MRI) scans in consecutive patients with TLE who underwent epilepsy surgery in a single center from January 1, 2005, through December 31, 2013. Participants underwent presurgical and postsurgical structural MRI and had at least 2 years of postoperative follow-up (median, 5 years; range, 2-11 years). Patients with MRI of insufficient quality were excluded. Findings were validated in 2 independent cohorts from tertiary epilepsy surgery centers. Study follow-up was completed on September 23, 2016, and data were analyzed from September 24, 2016, through April 24, 2018. Exposures: Standard anterior temporal lobe resection. Main Outcomes and Measures: Long-term postoperative seizure freedom. Results: In total, 107 patients with unilateral TLE (left-sided in 68; 63.6% women; median age, 37 years [interquartile range {IQR}, 30-45 years]) were included in the derivation cohort. Reduced postsurgical gray matter volumes were found in the ipsilateral piriform cortex in the postoperative seizure-free group (n = 46) compared with the non-seizure-free group (n = 61). A larger proportion of the piriform cortex was resected in the seizure-free compared with the non-seizure-free groups (median, 83% [IQR, 64%-91%] vs 52% [IQR, 32%-70%]; P < .001). The results were seen in left- and right-sided TLE and after adjusting for clinical variables, presurgical gray matter alterations, presurgical hippocampal volumes, and the proportion of white matter tract disconnection. Findings were externally validated in 2 independent cohorts (31 patients; left-sided TLE in 14; 54.8% women; median age, 41 years [IQR, 31-46 years]). The resected proportion of the piriform cortex was individually associated with seizure outcome after surgery (derivation cohort area under the curve, 0.80 [P < .001]; external validation cohorts area under the curve, 0.89 [P < .001]). Removal of at least half of the piriform cortex increased the odds of becoming seizure free by a factor of 16 (95% CI, 5-47; P < .001). Other mesiotemporal structures (ie, hippocampus, amygdala, and entorhinal cortex) and the overall resection volume were not associated with outcomes. Conclusions and Relevance: These results support the importance of resecting the piriform cortex in neurosurgical treatment of TLE and suggest that this area has a key role in seizure generation.


Asunto(s)
Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Sustancia Gris/cirugía , Corteza Piriforme/cirugía , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Procedimientos Neuroquirúrgicos , Tamaño de los Órganos , Corteza Piriforme/diagnóstico por imagen , Corteza Piriforme/patología , Prueba de Estudio Conceptual , Estudios Prospectivos , Reproducibilidad de los Resultados , Resultado del Tratamiento
11.
Epilepsia ; 59(10): 1811-1841, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30368792

RESUMEN

The Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV) took place in Madrid, Spain, on May 13-16, 2018 and was attended by 168 delegates from 28 countries. The conference provided a forum for professionals involved in basic science, clinical research, regulatory affairs, and clinical care to meet and discuss the latest advances related to discovery and development of drugs and devices aimed at improving the management of people with epilepsy. This progress report provides a summary of findings on investigational compounds for which data from preclinical or early (phase I) clinical studies were presented. The compounds reviewed include adenosine and adenosine kinase inhibitors, BIS-001 (huperzine A), 2-deoxy-d-glucose, FV-082, FV-137, JNJ-40411813, JNJ-55511118 and analogs, ketone-enhanced antiepileptic drugs, oxynytones, OV329, TAK-935 (OV935), XEN901, and XEN1101. Many innovative approaches to drug development were presented. For example, some compounds are being combined with traditional antiepileptic drugs based on evidence of synergism in seizure models, some act as inhibitors of enzymes involved in modulation of neuronal activity, and some interact in novel ways with excitatory receptors or ion channels. Some of the compounds in development target the etiology of specific epilepsy syndromes (including orphan conditions) through precision medicine, and some offer hope of producing disease-modifying effects rather than symptomatic seizure suppression. Overall, the results summarized in the report indicate that important advances are being made in the effort to develop compounds with potentially improved efficacy and safety profiles compared with existing agents.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Ensayos Clínicos como Asunto , Congresos como Asunto , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Desarrollo de Medicamentos , Drogas en Investigación , Humanos , España
12.
Curr Pharm Des ; 23(37): 5727-5739, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28799517

RESUMEN

BACKGROUND: Approximately one third of patients with epilepsy are refractory to medical treatment. Adverse effects associated with Anti-Epileptic Drugs (AEDs) are considered to affect quality of life often more than seizures themselves. Neuroimaging techniques, particularly Magnetic Resonance Imaging (MRI), have proven instrumental in clinical decision making in relation to epilepsy surgery, but may also provide further insights into the mechanisms underlying treatment response and side effects associated with AEDs. OBJECTIVE AND METHOD: We searched PubMed and Scopus databases for original articles and reviews published in the last two decades, which addressed the effects of AEDs on structural MRI, functional MRI and Magnetic Resonance Spectroscopy (MRS) measures. RESULTS: The majority of investigations implemented task-based fMRI, and probed the influence of widely used anti-epileptic drugs on tasks assessing language, executive functions and emotion recognition. Collectively, MRI allows detecting reproducible AED-related effects on regions and networks relevant to disease pathomechanisms, thus elucidating the anatomo-functional substrates of cognitive side effects. MRS analyses shed light on the molecular correlates of AED action, and may provide indicators of treatment response. CONCLUSION: MRI techniques have considerably improved our understanding of the effects of AEDs at a regional and network level, and provide biomarkers with potential to improve routine clinical decision making in epilepsy.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Biomarcadores/análisis , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Animales , Epilepsia/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador
13.
Lancet Neurol ; 15(4): 420-33, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26925532

RESUMEN

Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo , Electroencefalografía/métodos , Epilepsia , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Encéfalo/patología , Encéfalo/fisiopatología , Encéfalo/cirugía , Epilepsia/patología , Epilepsia/fisiopatología , Epilepsia/cirugía , Humanos
14.
Brain ; 139(Pt 2): 415-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26754787

RESUMEN

Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Memoria/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Lóbulo Temporal/fisiología , Lóbulo Temporal/cirugía , Adulto , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Neurology ; 84(15): 1512-9, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770199

RESUMEN

OBJECTIVE: To develop a clinically applicable memory functional MRI (fMRI) method of predicting postsurgical memory outcome in individual patients. METHODS: In this prospective cohort study, 50 patients with temporal lobe epilepsy (23 left) and 26 controls underwent an fMRI memory encoding paradigm of words with a subsequent out-of-scanner recognition assessment. Neuropsychological assessment was performed preoperatively and 4 months after anterior temporal lobe resection, and at equal time intervals in controls. An event-related analysis was used to explore brain activations for words remembered and change in verbal memory scores 4 months after surgery was correlated with preoperative activations. Individual lateralization indices were calculated within a medial temporal and frontal region and compared with other clinical parameters (hippocampal volume, preoperative verbal memory, age at onset of epilepsy, and language lateralization) as a predictor of verbal memory outcome. RESULTS: In left temporal lobe epilepsy patients, left frontal and anterior medial temporal activations correlated significantly with greater verbal memory decline, while bilateral posterior hippocampal activation correlated with less verbal memory decline postoperatively. In a multivariate regression model, left lateralized memory lateralization index (≥0.5) within a medial temporal and frontal mask was the best predictor of verbal memory outcome after surgery in the dominant hemisphere in individual patients. Neither clinical nor functional MRI parameters predicted verbal memory decline after nondominant temporal lobe resection. CONCLUSION: We propose a clinically applicable memory fMRI paradigm to predict postoperative verbal memory decline after surgery in the language-dominant hemisphere in individual patients.


Asunto(s)
Lobectomía Temporal Anterior/efectos adversos , Corteza Cerebral/fisiopatología , Corteza Cerebral/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Lateralidad Funcional/fisiología , Trastornos de la Memoria/fisiopatología , Complicaciones Posoperatorias/fisiopatología , Adulto , Mapeo Encefálico , Lóbulo Frontal/fisiopatología , Hipocampo/fisiopatología , Hipocampo/cirugía , Humanos , Imagen por Resonancia Magnética , Trastornos de la Memoria/etiología , Valor Predictivo de las Pruebas , Estudios Prospectivos , Sensibilidad y Especificidad , Lóbulo Temporal/fisiopatología , Lóbulo Temporal/cirugía
16.
Epilepsia ; 55(10): 1504-11, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25182478

RESUMEN

OBJECTIVE: Assessment of language dominance using functional magnetic resonance imaging (fMRI) is a standard tool to estimate the risk of language function decline after epilepsy surgery. Although there has been considerable research in the characterization of language networks in bilingual individuals; little is known about the clinical usefulness of language mapping in a secondary language in patients with epilepsy, and how language lateralization assessed by fMRI may differ by the use of native or a secondary language paradigms. In this study we investigate language representation in a population of nonnative English speakers to assess differences in fMRI language lateralization between the first (native) and second language (English). METHODS: Sixteen nonnative English-speaking patients with focal drug-resistant epilepsy underwent language fMRI in their first (native) language (L1) and in English (L2). Differences between language maps using L1 and L2 paradigms were examined at the single subject level by comparing within-subject lateralization indexes obtained for each language. Differences at the group level were examined for each of the tasks and languages. RESULTS: Group maps for the second language (English) showed overlapping areas of activation with the native language, but with larger clusters, and more bilaterally distributed than for the first language. However, at the individual level, lateralization indexes were concordant between the two languages, except for one patient with bilateral hippocampal sclerosis who was left dominant in English and showed bilateral dominance for verb generation and right dominance for verbal fluency in his native tongue. SIGNIFICANCE: Language lateralization can generally be reliably derived from fMRI tasks in a second language provided that the subject can follow the task. Subjects with greater likelihood of atypical language representation should be evaluated more carefully, using more than one language paradigm.


Asunto(s)
Encéfalo/fisiología , Dominancia Cerebral/fisiología , Neuroimagen Funcional , Imagen por Resonancia Magnética , Multilingüismo , Adulto , Factores de Edad , Femenino , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
17.
Neurology ; 83(15): 1326-31, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25186858

RESUMEN

OBJECTIVES: To study the functional activity of the multidrug efflux transporter P-glycoprotein (Pgp) at the blood-brain barrier of patients with temporal lobe epilepsy using (R)-[(11)C]verapamil (VPM)-PET before and after temporal lobe surgery to assess whether postoperative changes in seizure frequency and antiepileptic drug load are associated with changes in Pgp function. METHODS: Seven patients with drug-resistant temporal lobe epilepsy underwent VPM-PET scans pre- and postsurgery. Patients were followed up for a median of 6 years (range 4-7) after surgery. Pgp immunoreactivity in surgically resected hippocampal specimens was determined with immunohistochemistry. RESULTS: Optimal surgical outcome, defined as seizure freedom and withdrawal of antiepileptic drugs, was associated with higher temporal lobe Pgp function before surgery, higher Pgp-positive staining in surgically resected hippocampal specimens, and reduction in global Pgp function postoperatively, compared with nonoptimal surgery outcome. CONCLUSIONS: The data from our pilot study suggest that Pgp overactivity in epilepsy is dynamic, and complete seizure control and elimination of antiepileptic medication is associated with reversal of overactivity, although these findings will require confirmation in a larger patient cohort.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/cirugía , Lóbulo Temporal/metabolismo , Adulto , Anticonvulsivantes , Radioisótopos de Carbono , Resistencia a Medicamentos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Tomografía de Emisión de Positrones , Periodo Posoperatorio , Periodo Preoperatorio , Lóbulo Temporal/diagnóstico por imagen , Verapamilo
18.
Brain ; 137(Pt 5): 1439-53, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24691395

RESUMEN

Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50-80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex.


Asunto(s)
Hipocampo/irrigación sanguínea , Imagen por Resonancia Magnética , Trastornos de la Memoria/cirugía , Memoria a Corto Plazo/fisiología , Plasticidad Neuronal/fisiología , Lóbulo Parietal/irrigación sanguínea , Adulto , Lobectomía Temporal Anterior/métodos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/cirugía , Estudios de Seguimiento , Lateralidad Funcional/fisiología , Hipocampo/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Trastornos de la Memoria/etiología , Trastornos de la Memoria/patología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Oxígeno/sangre , Percepción Espacial , Factores de Tiempo , Adulto Joven
19.
Brain ; 136(Pt 6): 1889-900, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23715092

RESUMEN

Anterior temporal lobe resection controls seizures in 50-60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética/tendencias , Memoria/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Adulto Joven
20.
Brain ; 133(Pt 8): 2348-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20826432

RESUMEN

Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy patients before and a mean of 4.5 months after anterior temporal lobe resection. The whole-brain analysis technique tract-based spatial statistics was used to compare pre- and postoperative data in the left and right temporal lobe epilepsy groups separately. We observed widespread, significant, mean 7%, decreases in fractional anisotropy in white matter networks connected to the area of resection, following both left and right temporal lobe resections. However, we also observed a widespread, mean 8%, increase in fractional anisotropy after left anterior temporal lobe resection in the ipsilateral external capsule and posterior limb of the internal capsule, and corona radiata. These findings were confirmed on analysis of the native clusters and hand drawn regions of interest. Postoperative tractography seeded from this area suggests that this cluster is part of the ventro-medial language network. The mean pre- and postoperative fractional anisotropy and parallel diffusivity in this cluster were significantly correlated with postoperative verbal fluency and naming test scores. In addition, the percentage change in parallel diffusivity in this cluster was correlated with the percentage change in verbal fluency after anterior temporal lobe resection, such that the bigger the increase in parallel diffusivity, the smaller the fall in language proficiency after surgery. We suggest that the findings of increased fractional anisotropy in this ventro-medial language network represent structural reorganization in response to the anterior temporal lobe resection, which may damage the more susceptible dorso-lateral language pathway. These findings have important implications for our understanding of brain injury and rehabilitation, and may also prove useful in the prediction and minimization of postoperative language deficits.


Asunto(s)
Encéfalo/patología , Fibras Nerviosas Mielínicas/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Adolescente , Adulto , Anisotropía , Lobectomía Temporal Anterior , Imagen de Difusión Tensora , Epilepsia/patología , Epilepsia/cirugía , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Lenguaje , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Plasticidad Neuronal , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA