Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Cancer ; 15(10): 3128-3139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706912

RESUMEN

Background: The long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to play a crucial role in the progression of esophageal squamous cell carcinoma (ESCC). The current study aims to explore the deeper molecular mechanisms of SNHG1 in ESCC. Methods: Fifty patients with ESCC were enrolled to assess overall survival. Quantitative real-time PCR was performed to measure the levels of SNHG1, miR-216a-3p, and TMBIM6 in ESCC cells. Functional assessments of SNHG1 on ESCC cells were conducted using CCK-8 assay, flow cytometry, and Transwell assays. Western blot was conducted to detect the protein levels of TMBIM6 and proapoptotic proteins (Calpain and Caspase-12). The interaction among SNHG1, miR-216a-3p, and TMBIM6 was assessed with luciferase reporter assays. Results: Our study revealed that SNHG1 was notably increased in both clinical ESCC samples and cellular lines. Upregulation of SNHG1 in ESCC tissues was indicative of poor overall survival. Functionally, SNHG1 knockdown significantly inhibited the proliferation, migration, and invasion while promoting apoptosis in ESCC cells. Mechanistically, SNHG1 functioned as a competing endogenous RNA by sequestering miR-216a-3p to modulate TMBIM6 levels in ESCC cells. Notably, inhibiting miR-216a-3p or restoring TMBIM6 reversed the inhibitory effect induced by SNHG1 knockdown in ESCC cells. Conclusions: We demonstrate for the first time that SNHG1 may act as a competing endogenous RNA and promote ESCC progression through the miR-216a-3p/TMBIM6 axis. This highlights the potential of SNHG1 as a target for ESCC treatment.

2.
PLoS One ; 19(2): e0291543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354108

RESUMEN

Our previous work demonstrated that the anisodamine (ANI) and neostigmine (NEO) combination produced an antiseptic shock effect and rescued acute lethal crush syndrome by activating the α7 nicotinic acetylcholine receptor (α7nAChR). This study documents the therapeutic effect and underlying mechanisms of the ANI/NEO combination in dextran sulfate sodium (DSS)-induced colitis. Treating mice with ANI and NEO at a ratio of 500:1 alleviated the DSS-induced colitis symptoms, reduced body weight loss, improved the disease activity index, enhanced colon length, and alleviated colon inflammation. The combination treatment also enhanced autophagy in the colon of mice with DSS-induced colitis and lipopolysaccharide/DSS-stimulated Caco-2 cells. Besides, the ANI/NEO treatment significantly reduced INF-γ, TNF-α, IL-6, and IL-22 expression in colon tissues and decreased TNF-α, IL-1ß, and IL-6 mRNA levels in Caco-2 cells. Meanwhile, the autophagy inhibitor 3-methyladenine and ATG5 siRNA attenuated these effects. Furthermore, 3-methyladenine (3-MA) and the α7nAChR antagonist methyllycaconitine (MLA) weakened the ANI/NEO-induced protection on DSS-induced colitis in mice. Overall, these results indicate that the ANI/NEO combination exerts therapeutic effects through autophagy and α7nAChR in a DSS-induced colitis mouse model.


Asunto(s)
Colitis , Neostigmina , Alcaloides Solanáceos , Ratones , Animales , Humanos , Neostigmina/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Interleucina-6/metabolismo , Células CACO-2 , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Autofagia , Sulfato de Dextran/toxicidad , Colon/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Ann Transl Med ; 9(19): 1503, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34805365

RESUMEN

OBJECTIVE: We aimed at comprehensively analyzing ferroptosis regulation and its potential role in the treatment of associated diseases. BACKGROUND: Ferroptosis is a recently discovered form of cell death that involves small molecule-induced oxidative cell death. This process is usually accompanied by large amounts of iron accumulation and lipid peroxidation. Ferroptosis inducers directly or indirectly affect glutathione peroxidase (GPXs) through different pathways. Disturbances in GPXs result in suppressed cellular antioxidant capacities, accumulation of lipid reactive oxygen species (ROS) and oxidative cell death. It has been reported that ferroptosis is closely associated with the pathophysiological processes of many diseases, including tumors, nervous system diseases, ischemia-reperfusion injury, kidney injury and iron metabolism diseases among others. METHODS: First, we reviewed the mechanisms of ferroptosis, with emphasis on the characteristics and functions of ferroptosis in multiple pathways. Then, inducers and inhibitors of ferroptosis were reviewed, and their mechanisms of action elucidated. Finally, ferroptosis-associated pathophysiological processes of various diseases were reviewed. CONCLUSIONS: Ferroptosis is associated with the occurrence and development of various diseases. Elucidation of the mechanisms involved in ferroptosis will inform new therapeutic targets and strategies for these diseases.

4.
Biomaterials ; 35(12): 3803-18, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24486216

RESUMEN

The facts that biomaterials affect the behavior of single type of cells have been widely accepted. However, the effects of biomaterials on cell-cell interactions have rarely been reported. Bone tissue engineering involves osteoblastic cells (OCs), endothelial cells (ECs) and the interactions between OCs and ECs. It has been reported that silicate biomaterials can stimulate osteogenic differentiation of OCs and vascularization of ECs. However, the effects of silicate biomaterials on the interactions between ECs and OCs during vascularization and osteogenesis have not been reported, which are critical for bone tissue regeneration in vivo. Therefore, this study aimed to investigate the effects of calcium silicate (CS) bioceramics on interactions between human umbilical vein endothelial cells (HUVECs) and human bone marrow stromal cells (HBMSCs) and on stimulation of vascularization and osteogenesis in vivo through combining co-cultures with CS containing scaffolds. Specifically, the effects of CS on the angiogenic growth factor VEGF, osteogenic growth factor BMP-2 and the cross-talks between VEGF and BMP-2 in the co-culture system were elucidated. Results showed that CS stimulated co-cultured HBMSCs (co-HBMSCs) to express VEGF and the VEGF activated its receptor KDR on co-cultured HUVECs (co-HUVECs), which was also up-regulated by CS. Then, BMP-2 and nitric oxide expression from the co-HUVECs were stimulated by CS and the former stimulated osteogenic differentiation of co-HBMSCs while the latter stimulated vascularization of co-HVUECs. Finally, the poly(lactic-co-glycolic acid)/CS composite scaffolds with the co-cultured HBMSCs and HUVECs significantly enhanced vascularization and osteogenic differentiation in vitro and in vivo, which indicates that it is a promising way to enhance bone regeneration by combining scaffolds containing silicate bioceramics and co-cultures of ECs and OCs.


Asunto(s)
Cerámica , Células Endoteliales/citología , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica , Osteogénesis , Silicatos/química , Secuencia de Bases , Proteína Morfogenética Ósea 2/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Cartilla de ADN , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor A de Crecimiento Endotelial Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA