Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arch Pharm Res ; 41(7): 691-710, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30039377

RESUMEN

Synthetic cannabinoids, a new class of psychoactive substances, are potent agonists of cannabinoid receptors, which mimic the psychoactive effects of the principal psychoactive component of cannabis, ∆9-tetrahydrocannabinol. Despite governmental scheduling as illicit drugs, new synthetic cannabinoids are being produced. The abuse of synthetic cannabinoids with several drugs containing different chemical groups has resulted in large numbers of poisonings. This has increased the urgency for forensic and public health laboratories to identify the metabolites of synthetic cannabinoids and apply this knowledge to the development of analytical methods and for toxicity prediction. It is necessary to determine whether synthetic cannabinoids are involved in drug-metabolizing enzyme-mediated drug-drug interactions. This review describes the metabolic pathways of 13 prevalent synthetic cannabinoids and various drug-metabolizing enzymes responsible for their metabolism, including cytochrome P450 (CYP), UDP-glucuronosyltransferases (UGTs), and carboxylesterases. The inhibitory effects of synthetic cannabinoids on CYP and UGT activities are also reviewed to predict the potential of synthetic cannabinoids for drug-drug interactions. The drug-metabolizing enzymes responsible for metabolism of synthetic cannabinoids should be characterized and the effects of synthetic cannabinoids on CYP and UGT activities should be determined to predict the pharmacokinetics of synthetic cannabinoids and synthetic cannabinoid-induced drug-drug interactions in the clinic.


Asunto(s)
Cannabinoides/farmacología , Hidrolasas de Éster Carboxílico/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Psicotrópicos/farmacología , Cannabinoides/química , Cannabinoides/metabolismo , Humanos , Psicotrópicos/química , Psicotrópicos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-29886289

RESUMEN

The profiling of fatty acids (FAs) or sterols has been applied in clinical studies, but still needs to be improved to enable their simultaneous quantification. Moreover, little progress has been made in determining the levels of FAs and sterols in human saliva in a single run. In this study, gas chromatography-tandem mass spectrometry (GC-MS/MS) using one-step tert-butyldimethylsilyl (TBDMS) derivatization was developed for comprehensive profiling of 18 FAs (eight saturated, five monounsaturated, and five polyunsaturated FAs) and 7 sterols (cholesterol and its precursors). The TBDMS derivatization process was also optimized in terms of reaction solvent, catalyst, temperature, and reaction time. The optimized conditions resulted in better derivatization efficiency with good chromatographic separation through a high-temperature column within 23 min. The present method provided good linearity (r > 0.993), precision (coefficient of variation, 2.7% to 10.4%), and accuracy (91.5% to 103.4%). The overall recovery ranged from 73.8% to 114.3% for the 18 FAs, and from 68.9% to 79.8% for the 7 sterols. The validated method was applied to characterize FAs and sterols in human saliva samples. This is the first report of a GC-MS/MS method for the simultaneous determination of various FAs and sterols from a small volume (100 µL) of saliva. This approach can be used as a primary screening tool to examine the levels of both FAs and sterols in saliva, providing detailed information about their homeostasis for diagnostic and prognostic purposes.


Asunto(s)
Ácidos Grasos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos de Organosilicio/química , Saliva/química , Esteroles/análisis , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Límite de Detección , Modelos Lineales , Extracción Líquido-Líquido , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
3.
Molecules ; 23(4)2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29659506

RESUMEN

EAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors that is widely abused as an illicit recreational drug in combination with other drugs. To evaluate the potential of EAM-2201 as a perpetrator of drug−drug interactions, the inhibitory effects of EAM-2201 on major drug-metabolizing enzymes, cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) were evaluated in pooled human liver microsomes using liquid chromatography−tandem mass spectrometry (LC-MS/MS). EAM-2201 at doses up to 50 µM negligibly inhibited the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and five UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes. EAM-2201 exhibited time-dependent inhibition of CYP2C8-catalyzed amodiaquine N-deethylation, CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation with Ki values of 0.54 µM (kinact: 0.0633 min−1), 3.0 µM (kinact: 0.0462 min−1), 3.8 µM (kinact: 0.0264 min−1) and 4.1 µM (kinact: 0.0250 min−1), respectively and competitively inhibited UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with a Ki value of 2.4 µM. Based on these in vitro results, we conclude that EAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP2C19, CYP3A4 and UGT1A3.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/metabolismo , Indoles/farmacología , Microsomas Hepáticos/efectos de los fármacos , Naftalenos/farmacología , Interacciones Farmacológicas , Humanos , Cinética , Microsomas Hepáticos/enzimología , Estructura Molecular , Oxidación-Reducción , Termodinámica
4.
Arch Pharm Res ; 40(6): 727-735, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28484907

RESUMEN

MAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors and is increasingly used as an illicit recreational drug. The inhibitory effects of MAM-2201 on major drug-metabolizing enzymes such as cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) have not yet been investigated although it is widely abused, sometimes in combination with other drugs. We evaluated the inhibitory effects of MAM-2201 on eight major human CYPs (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six UGTs (UGTs 1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) of pooled human liver microsomes; we thus explored potential MAM-2201-induced drug interactions. MAM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, and UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with K i values of 5.6, 5.4 and 5.0 µM, respectively. MAM-2201 exhibited mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-de-ethylation with K i and k inact values of 1.0 µM and 0.0738 min-1, respectively. In human liver microsomes, MAM-2201 (50 µM) negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7. Based on these in vitro results, we conclude that MAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP3A4, and UGT1A3.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Indoles/farmacología , Microsomas Hepáticos/efectos de los fármacos , Naftalenos/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Glucuronosiltransferasa/metabolismo , Humanos , Indoles/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Naftalenos/química , Relación Estructura-Actividad
5.
Molecules ; 22(3)2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28287454

RESUMEN

AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography-tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 µM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 µM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 µM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucuronosiltransferasa/antagonistas & inhibidores , Indoles/farmacología , Microsomas Hepáticos/enzimología , Naftalenos/farmacología , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Indoles/química , Concentración 50 Inhibidora , Isoenzimas , Estructura Molecular , Naftalenos/química , Espectrometría de Masas en Tándem
6.
Arch Pharm Res ; 39(4): 516-530, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26983827

RESUMEN

Honokiol has antitumor, antioxidative, anti-inflammatory, and antithrombotic effects. Here we aimed to identify the metabolic profile of honokiol in mouse, rat, dog, monkey, and human hepatocytes and to characterize the enzymes responsible for the glucuronidation and sulfation of honokiol. Honokiol had a high hepatic extraction ratio in all five species, indicating that it was extensively metabolized. A total of 32 metabolites, including 17 common and 15 different metabolites, produced via glucuronidation, sulfation, and oxidation of honokiol allyl groups were tentatively identified using liquid chromatography-high resolution quadrupole Orbitrap mass spectrometry. Glucuronidation of honokiol to M8 (honokiol-4-glucuronide) and M9 (honokiol-2'-glucuronide) was the predominant metabolic pathway in hepatocytes of all five species; however, interspecies differences between 4- and 2'-glucuronidation of honokiol were observed. UGT1A1, 1A8, 1A9, 2B15, and 2B17 played major roles in M8 formation, whereas UGT1A7 and 1A9 played major roles in M9 formation. Human cDNA-expressed SULT1C4 played a major role in M10 formation (honokiol-2'-sulfate), whereas SULT1A1*1, 1A1*2, and 1A2 played major roles in M11 formation (honokiol-4-sulfate). In conclusion, honokiol metabolism showed interspecies differences.


Asunto(s)
Arilsulfotransferasa/metabolismo , Compuestos de Bifenilo/metabolismo , Glucuronosiltransferasa/metabolismo , Hepatocitos/metabolismo , Lignanos/metabolismo , Animales , Biotransformación , Células Cultivadas , Cromatografía Liquida , Perros , Glucurónidos/metabolismo , Haplorrinos , Hepatocitos/enzimología , Humanos , Ratones , Oxidación-Reducción , Ratas , Especificidad de la Especie , Ésteres del Ácido Sulfúrico/metabolismo , Espectrometría de Masas en Tándem
7.
BMC Complement Altern Med ; 14: 251, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25034211

RESUMEN

BACKGROUND: Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. METHOD: The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. RESULTS: DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC50 values of 106, 174, 48.1, and 273 µg/mL, respectively, while the other transporters were not inhibited by 300 µg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the Cmax of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is governed by OCT1, OCT2, and OAT3. Moreover, DA-9801 did not affect the pharmacokinetic characteristics of furosemide, as evidenced by its unchanged pharmacokinetic parameters. CONCLUSION: Inhibitory effects of DA-9801 on OCT1, OCT2, and OAT3 observed in vitro may not necessarily translate into in vivo herb-drug interactions in rats even at its maximum effective dose.


Asunto(s)
Cimetidina/farmacocinética , Furosemida/farmacocinética , Interacciones de Hierba-Droga , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Preparaciones de Plantas/farmacología , Animales , Furosemida/sangre , Células HEK293 , Humanos , Masculino , Proteínas de Transporte de Catión Orgánico/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Molecules ; 18(9): 10681-93, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24005963

RESUMEN

Honokiol is a bioactive component isolated from the medicinal herbs Magnolia officinalis and Magnolia grandiflora that has antioxidative, anti-inflammatory, antithrombotic, and antitumor activities. The inhibitory potentials of honokiol on eight major human cytochrome P450 (CYP) enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4, and four UDP-glucuronosyltransferases (UGTs) 1A1, 1A4, 1A9, and 2B7 in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. Honokiol strongly inhibited CYP1A2-mediated phenacetin O-deethylation, CYP2C8-mediated amodiaquine N-deethylation, CYP2C9-mediated diclofenac 4-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4-hydroxylation, and UGT1A9-mediated propofol glucuronidation with K(i) values of 1.2, 4.9, 0.54, 0.57, and 0.3 µM, respectively. Honokiol also moderately inhibited CYP2B6-mediated bupropion hydroxylation and CYP2D6-mediated bufuralol 1'-hydroxylation with K(i) values of 17.5 and 12.0 µM, respectively. These in vitro results indicate that honokiol has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, CYP2C8, CYP2C9, CYP2C19, and UGT1A9.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Lignanos/farmacología , Microsomas Hepáticos/enzimología , Hidrocarburo de Aril Hidroxilasas/metabolismo , Bupropión/metabolismo , Medicamentos Herbarios Chinos/farmacología , Etanolaminas/metabolismo , Glucuronosiltransferasa/metabolismo , Interacciones de Hierba-Droga , Humanos , Hidroxilación , Inactivación Metabólica , Concentración 50 Inhibidora , Hígado/enzimología , Microsomas Hepáticos/efectos de los fármacos , Fenacetina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA