Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
2.
J Exp Clin Cancer Res ; 42(1): 309, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993887

RESUMEN

BACKGROUND: Recently, cancer organoid-based drug sensitivity tests have been studied to predict patient responses to anticancer drugs. The area under curve (AUC) or IC50 value of the dose-response curve (DRC) is used to differentiate between sensitive and resistant patient's groups. This study proposes a multi-parameter analysis method (cancer organoid-based diagnosis reactivity prediction, CODRP) that considers the cancer stage and cancer cell growth rate, which represent the severity of cancer patients, in the sensitivity test. METHODS: On the CODRP platform, patient-derived organoids (PDOs) that recapitulate patients with lung cancer were implemented by applying a mechanical dissociation method capable of high yields and proliferation rates. A disposable nozzle-type cell spotter with efficient high-throughput screening (HTS) has also been developed to dispense a very small number of cells due to limited patient cells. A drug sensitivity test was performed using PDO from the patient tissue and the primary cancer characteristics of PDOs were confirmed by pathological comparision with tissue slides. RESULTS: The conventional index of drug sensitivity is the AUC of the DRC. In this study, the CODRP index for drug sensitivity test was proposed through multi-parameter analyses considering cancer cell proliferation rate, the cancer diagnosis stage, and AUC values. We tested PDOs from eight patients with lung cancer to verify the CODRP index. According to the anaplastic lymphoma kinase (ALK) rearrangement status, the conventional AUC index for the three ALK-targeted drugs (crizotinib, alectinib, and brigatinib) did not classify into sensitive and resistant groups. The proposed CODRP index-based drug sensitivity test classified ALK-targeted drug responses according to ALK rearrangement status and was verified to be consistent with the clinical drug treatment response. CONCLUSIONS: Therefore, the PDO-based HTS and CODRP index drug sensitivity tests described in this paper may be useful for predicting and analyzing promising anticancer drug efficacy for patients with lung cancer and can be applied to a precision medicine platform.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Crizotinib/uso terapéutico , Organoides
3.
SLAS Discov ; 28(4): 119-137, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997090

RESUMEN

Three-dimensional (3D) cell culture technology has been steadily studied since the 1990's due to its superior biocompatibility compared to the conventional two-dimensional (2D) cell culture technology, and has recently developed into an organoid culture technology that further improved biocompatibility. Since the 3D culture of human cell lines in artificial scaffolds was demonstrated in the early 90's, 3D cell culture technology has been actively developed owing to various needs in the areas of disease research, precision medicine, new drug development, and some of these technologies have been commercialized. In particular, 3D cell culture technology is actively being applied and utilized in drug development and cancer-related precision medicine research. Drug development is a long and expensive process that involves multiple steps-from target identification to lead discovery and optimization, preclinical studies, and clinical trials for approval for clinical use. Cancer ranks first among life-threatening diseases owing to intra-tumoral heterogeneity associated with metastasis, recurrence, and treatment resistance, ultimately contributing to treatment failure and adverse prognoses. Therefore, there is an urgent need for the development of efficient drugs using 3D cell culture techniques that can closely mimic in vivo cellular environments and customized tumor models that faithfully represent the tumor heterogeneity of individual patients. This review discusses 3D cell culture technology focusing on research trends, commercialization status, and expected effects developed until recently. We aim to summarize the great potential of 3D cell culture technology and contribute to expanding the base of this technology.


Asunto(s)
Técnicas de Cultivo de Célula , Neoplasias , Humanos , Técnicas de Cultivo de Célula/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Organoides , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA