Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanoscale ; 15(33): 13498-13514, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37578148

RESUMEN

With the recent interest in the role of oxidative species/radicals in diseases, inorganic nanomaterials with redox activities have been extensively investigated for their potential use in nanomedicine. While many studies focusing on relieving oxidative stress to prevent pathogenesis and to suppress the progression of diseases have shown considerable success, another approach for increasing oxidative stress using nanomaterials to kill malignant cells has suffered from low efficiency despite its wide applicability to various targets. Chemodynamic therapy (CDT) is an emerging technique that can resolve such a problem by exploiting the characteristic tumour microenvironment to achieve high selectivity. In this review, we summarize the recent strategies and underlying mechanisms that have been used to improve the CDT performance using inorganic nanoparticles. In addition to the design of CDT agents, the effects of contributing factors, such as the acidity and the levels of hydrogen peroxide and antioxidants in the tumour microenvironment, together with their modulation and application in combination therapy, are presented. The challenges lying ahead of future clinical translation of this rapidly advancing technology are also discussed.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Humanos , Neoplasias/patología , Nanopartículas/uso terapéutico , Nanomedicina , Oxidación-Reducción , Peróxido de Hidrógeno/uso terapéutico , Microambiente Tumoral , Línea Celular Tumoral
2.
ACS Nano ; 17(6): 5435-5447, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36926815

RESUMEN

Postsurgical treatment of glioblastoma multiforme (GBM) by systemic chemotherapy and radiotherapy is often inefficient. Tumor cells infiltrating deeply into the brain parenchyma are significant obstacles to the eradication of GBM. Here, we present a potential solution to this challenge by introducing an injectable thermoresponsive hydrogel nanocomposite. As a liquid solution that contains drug-loaded micelles and water-dispersible ferrimagnetic iron oxide nanocubes (wFIONs), the hydrogel nanocomposite is injected into the resected tumor site after surgery. It promptly gelates at body temperature to serve as a soft, deep intracortical drug reservoir. The drug-loaded micelles target residual GBM cells and deliver drugs with a minimum premature release. Alternating magnetic fields accelerate diffusion through heat generation from wFIONs, enabling penetrative drug delivery. Significantly suppressed tumor growth and improved survival rates are demonstrated in an orthotopic mouse GBM model. Our system proves the potential of the hydrogel nanocomposite platform for postsurgical GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanocompuestos , Animales , Ratones , Hidrogeles/uso terapéutico , Micelas , Sistemas de Liberación de Medicamentos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Nanocompuestos/uso terapéutico , Línea Celular Tumoral
3.
J Am Chem Soc ; 144(13): 5769-5783, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35275625

RESUMEN

The receptor-ligand interactions in cells are dynamically regulated by modulation of the ligand accessibility. In this study, we utilize size-tunable magnetic nanoparticle aggregates ordered at both nanometer and atomic scales. We flexibly anchor magnetic nanoparticle aggregates of tunable sizes over the cell-adhesive RGD ligand (Arg-Gly-Asp)-active material surface while maintaining the density of dispersed ligands accessible to macrophages at constant. Lowering the accessible ligand dispersity by increasing the aggregate size at constant accessible ligand density facilitates the binding of integrin receptors to the accessible ligands, which promotes the adhesion of macrophages. In high ligand dispersity, distant magnetic manipulation to lift the aggregates (which increases ligand accessibility) stimulates the binding of integrin receptors to the accessible ligands available under the aggregates to augment macrophage adhesion-mediated pro-healing polarization both in vitro and in vivo. In low ligand dispersity, distant control to drop the aggregates (which decreases ligand accessibility) repels integrin receptors away from the aggregates, thereby suppressing integrin receptor-ligand binding and macrophage adhesion, which promotes inflammatory polarization. Here, we present "accessible ligand dispersity" as a novel fundamental parameter that regulates receptor-ligand binding, which can be reversibly manipulated by increasing and decreasing the ligand accessibility. Limitless tuning of nanoparticle aggregate dimensions and morphology can offer further insight into the regulation of receptor-ligand binding in host cells.


Asunto(s)
Integrinas , Nanopartículas , Adhesión Celular , Integrinas/metabolismo , Ligandos , Macrófagos/metabolismo
4.
ACS Nano ; 16(2): 2535-2545, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080370

RESUMEN

An urgent need in chemodynamic therapy (CDT) is to achieve high Fenton catalytic efficiency at small doses of CDT agents. However, simple general promotion of the Fenton reaction increases the risk of damaging normal cells along with the cancer cells. Therefore, a tailored strategy to selectively enhance the Fenton reactivity in tumors, for example, by taking advantage of the characteristics of the tumor microenvironment (TME), is in high demand. Herein, a heterogeneous CDT system based on copper-iron peroxide nanoparticles (CFp NPs) is designed for TME-mediated synergistic therapy. CFp NPs degrade under the mildly acidic conditions of TME, self-supply H2O2, and the released Cu and Fe ions, with their larger portions at lower oxidation states, cooperatively facilitate hydroxyl radical production through a highly efficient catalytic loop to achieve an excellent tumor therapeutic efficacy. This is distinct from previous heterogeneous CDT systems in that the synergism is closely coupled with the Cu+-assisted conversion of Fe3+ to Fe2+ rather than their independent actions. As a result, almost complete ablation of tumors at a minimal treatment dose is demonstrated without the aid of any other therapeutic modality. Furthermore, CFp NPs generate O2 during the catalysis and exhibit a TME-responsive T1 magnetic resonance imaging contrast enhancement, which are useful for alleviating hypoxia and in vivo monitoring of tumors, respectively.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno , Neoplasias/tratamiento farmacológico , Peróxidos , Microambiente Tumoral
5.
Adv Mater ; 33(43): e2103258, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34510559

RESUMEN

Chimeric antigen receptor-T (CAR-T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell-manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR-T cell infiltration to solid tumors and inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR-M1 macrophages displaying enhanced cancer-directed phagocytosis and anti-tumor activity. In vivo injected nanocomplexes of macrophage-targeting nanocarriers and CAR-interferon-γ-encoding plasmid DNA induce CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis, anti-tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off-the-shelf CAR-macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR-cell manufacturing.


Asunto(s)
Receptores Quiméricos de Antígenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA