Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998281

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Bleomicina/efectos adversos , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Familia-src Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L391-L399, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35943156

RESUMEN

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation. To elucidate the specific role of leukocyte HIF-1α in COPD, we exposed transgenic mice with conditional deletion or overexpression of HIF-1α in leukocytes to cigarette smoke for 7 mo. Outcomes included pulmonary physiology, aerated lung volumes via microcomputed tomography, lung morphometry and histology, and cardiopulmonary hemodynamics. On aggregate, cigarette smoke increased the aerated lung volume, quasi-static lung compliance, inspiratory capacity of all strains while reducing the total alveolar septal volume. Independent of smoke exposure, mice with leukocyte-specific HIF-1α overexpression had increased quasi-static compliance, inspiratory capacity, and alveolar septal volume compared with mice with leukocyte-specific HIF-1α deletion. However, the overall development of cigarette smoke-induced lung disease did not vary relative to control mice for either of the conditional strains. This suggests that the development of murine cigarette smoke-induced airspace disease occurs independently of leukocyte HIF-1α signaling.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Animales , Modelos Animales de Enfermedad , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Leucocitos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/patología , Nicotiana/efectos adversos , Microtomografía por Rayos X
3.
Front Oncol ; 12: 815737, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924166

RESUMEN

The transmembrane receptor Frizzled 9 (FZD9) is important for fetal neurologic and bone development through both canonical and non-canonical WNT/FZD signaling. In the adult lung, however, Fzd9 helps to maintain a normal epithelium by signaling through peroxisome proliferator activated receptor γ (PPARγ). The effect of FZD9 loss on normal lung epithelial cells and regulators of its expression in the lung are unknown. We knocked down FZD9 in human bronchial epithelial cell (HBEC) lines and found that downstream EMT targets and PPARγ activity are altered. We used a FZD9-/- mouse in the urethane lung adenocarcinoma model and found FZD9-/- adenomas had more proliferation, increased EMT signaling, decreased activation of PPARγ, increased expression of lung cancer associated genes, increased transformed growth, and increased potential for invasive behavior. We identified PPARγ as a transcriptional regulator of FZD9. We also demonstrated that extended cigarette smoke exposure in HBEC leads to decreased FZD9 expression, decreased activation of PPARγ, and increased transformed growth, and found that higher exposure to cigarette smoke in human lungs leads to decreased FZD9 expression. These results provide evidence for the role of FZD9 in lung epithelial maintenance and in smoking related malignant transformation. We identified the first transcriptional regulator of FZD9 in the lung and found FZD9 negative lesions are more dangerous. Loss of FZD9 creates a permissive environment for development of premalignant lung lesions, making it a potential target for intervention.

4.
iScience ; 25(6): 104442, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35707728

RESUMEN

Prevention of premalignant lesion progression is a promising approach to reducing lung cancer burden in high-risk populations. Substantial preclinical and clinical evidence has demonstrated efficacy of the prostacyclin analogue iloprost for lung cancer chemoprevention. Iloprost activates peroxisome proliferator-activated receptor gamma (PPARG) to initiate chemopreventive signaling and in vitro, which requires the transmembrane receptor Frizzled9 (FZD9). We hypothesized a Fzd 9 -/- mouse would not be protected by iloprost in a lung cancer model. Fzd 9 -/- mice were treated with inhaled iloprost in a urethane model of lung adenoma. We found that Fzd 9 -/- mice treated with iloprost were not protected from adenoma development compared to wild-type mice nor did they demonstrate increased activation of iloprost signaling pathways. Our results established that iloprost requires FZD9 in vivo for lung cancer chemoprevention. This work represents a critical advancement in defining iloprost's chemopreventive mechanisms and identifies a potential response marker for future clinical trials.

5.
Toxicol Appl Pharmacol ; 404: 115186, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777237

RESUMEN

Increased symptoms of asthma-like respiratory illnesses have been reported in soldiers returning from tours of duty in Afghanistan. Inhalation of desert particulate matter (PM) may contribute to this deployment-related lung disease (DRLD), but little is known about disease mechanisms. The IL-33 signaling pathway, including its receptor ST2, has been implicated in the pathogenesis of lung diseases including asthma, but its role in PM-mediated airway dysfunction has not been studied. The goal of this study was to investigate whether IL-33/ST2 signaling contributes to airway dysfunction in preclinical models of lung exposure to Afghanistan PM (APM). Wild-type (WT) and ST2 knockout (KO) mice on the BALB/C background were oropharyngeally instilled with a single dose of saline or 50 µg of APM in saline. Airway hyperresponsiveness (AHR) and inflammation were assessed after 24 h. In WT mice, a single APM exposure induced AHR and neutrophilic inflammation. Unlike the WT mice, ST2 KO mice that lack the receptor for IL-33 did not demonstrate AHR although airway neutrophilic inflammation was comparable to the WT mice. Oropharyngeal delivery of a soluble ST2 decoy receptor in APM-exposed WT mice significantly blocked AHR. Additional data in mouse tracheal epithelial cell and lung macrophage cultures demonstrated a role of APM-induced IL-33/ST2 signaling in suppression of regulator of G protein signaling 2 (RGS2), a gene known to protect against bronchoconstriction. We present for the first time that APM may increase AHR, one of the features of asthma, in part through the IL-33/ST2/RGS2 pathway.


Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Enfermedades Pulmonares/inducido químicamente , Material Particulado/toxicidad , Afganistán , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Macrófagos/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Tamaño de la Partícula , Alveolos Pulmonares/citología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA