Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Biol Chem ; 293(34): 13204-13213, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29970614

RESUMEN

The pyruvate dehydrogenase multienzyme complex (PDHc) connects glycolysis to the tricarboxylic acid cycle by producing acetyl-CoA via the decarboxylation of pyruvate. Because of its pivotal role in glucose metabolism, this complex is closely regulated in mammals by reversible phosphorylation, the modulation of which is of interest in treating cancer, diabetes, and obesity. Mutations such as that leading to the αV138M variant in pyruvate dehydrogenase, the pyruvate-decarboxylating PDHc E1 component, can result in PDHc deficiency, an inborn error of metabolism that results in an array of symptoms such as lactic acidosis, progressive cognitive and neuromuscular deficits, and even death in infancy or childhood. Here we present an analysis of two X-ray crystal structures at 2.7-Å resolution, the first of the disease-associated human αV138M E1 variant and the second of human wildtype (WT) E1 with a bound adduct of its coenzyme thiamin diphosphate and the substrate analogue acetylphosphinate. The structures provide support for the role of regulatory loop disorder in E1 inactivation, and the αV138M variant structure also reveals that altered coenzyme binding can result in such disorder even in the absence of phosphorylation. Specifically, both E1 phosphorylation at αSer-264 and the αV138M substitution result in disordered loops that are not optimally oriented or available to efficiently bind the lipoyl domain of PDHc E2. Combined with an analysis of αV138M activity, these results underscore the general connection between regulatory loop disorder and loss of E1 catalytic efficiency.


Asunto(s)
Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Mutación , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo , Tiamina Pirofosfato/metabolismo , Catálisis , Cristalografía por Rayos X , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Complejo Piruvato Deshidrogenasa/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/enzimología
2.
Aging (Albany NY) ; 2(6): 344-52, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20606252

RESUMEN

Transient induction of p53 can cause reversible quiescence and irreversible senescence. Using nutlin-3a (a small molecule that activates p53 without causing DNA damage), we have previously identified cell lines in which nutlin-3a caused quiescence. Importantly, nutlin-3a caused quiescence by actively suppressing the senescence program (while still causing cell cycle arrest). Noteworthy, in these cells nutlin-3a inhibited the mTOR (mammalian Target of Rapamycin) pathway, which is known to be involved in the senescence program. Here we showed that shRNA-mediated knockdown of TSC2, a negative regulator of mTOR, partially converted quiescence into senescence in these nutlin-arrested cells. In accord, in melanoma cell lines and mouse embryo fibroblasts, which easily undergo senescence in response to p53 activation, nutlin-3a failed to inhibit mTOR. In these senescence-prone cells, the mTOR inhibitor rapamycin converted nutlin-3a-induced senescence into quiescence. We conclude that status of the mTOR pathway can determine, at least in part, the choice between senescence and quiescence in p53-arrested cells.


Asunto(s)
Senescencia Celular/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Senescencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Imidazoles/farmacología , Immunoblotting , Ratones , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR
3.
Proc Natl Acad Sci U S A ; 107(21): 9660-4, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20457898

RESUMEN

The tumor suppressor p53 is a canonical inducer of cellular senescence (irreversible loss of proliferative potential and senescent morphology). p53 can also cause reversible arrest without senescent morphology, which has usually been interpreted as failure of p53 to induce senescence. Here we demonstrate that p53-induced quiescence actually results from suppression of senescence by p53. In previous studies, suppression of senescence by p53 was masked by p53-induced cell cycle arrest. Here, we separated these two activities by inducing senescence through overexpression of p21 and then testing the effect of p53 on senescence. We found that in p21-arrested cells, p53 converted senescence into quiescence. Suppression of senescence by p53 required its transactivation function. Like rapamycin, which is known to suppress senescence, p53 inhibited the mTOR pathway. We suggest that, while inducing cell cycle arrest, p53 may simultaneously suppress the senescence program, thus causing quiescence and that suppression of senescence and induction of cell cycle arrest are distinct functions of p53. Thus, in spite of its ability to induce cell cycle arrest, p53 can act as a suppressor of cellular senescence.


Asunto(s)
Senescencia Celular , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Humanos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Piperazinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
4.
Cell Cycle ; 8(22): 3777-81, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19855165

RESUMEN

Cellular senescence is characterized by irreversible loss of proliferative potential and a large, flat cell morphology. Ectopic p21 and doxorubicin induced cellular senescence in HT1080 and WI-38-tert cell lines. In the same cell lines, the Mdm2 inhibitor nutlin-3a induced p53 but, unexpectedly, caused quiescence (reversible arrest) with a small cell morphology. We discuss that Mdm antagonists could be used in combination with chemotherapy to reversibly arrest normal cells, thus protecting them during chemotherapy of cancer (cyclotherapy).


Asunto(s)
Ciclo Celular/fisiología , Proliferación Celular , Quimioterapia/métodos , Imidazoles/metabolismo , Piperazinas/metabolismo , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Ensayo de Unidades Formadoras de Colonias , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/farmacología , Doxorrubicina/farmacología , Citometría de Flujo , Humanos , Immunoblotting , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , beta-Galactosidasa
5.
J Biol Chem ; 281(1): 648-55, 2006 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-16263718

RESUMEN

The dihydrolipoamide dehydrogenase-binding protein (E3BP) and the dihydrolipoamide acetyltransferase (E2) component enzyme form the structural core of the human pyruvate dehydrogenase complex by providing the binding sites for two other component proteins, dihydrolipoamide dehydrogenase (E3) and pyruvate dehydrogenase (E1), as well as pyruvate dehydrogenase kinases and phosphatases. Despite a high similarity between the primary structures of E3BP and E2, the E3-binding domain of human E3BP is highly specific to human E3, whereas the E1-binding domain of human E2 is highly specific to human E1. In this study, we characterized binding of human E3 to the E3-binding domain of E3BP by x-ray crystallography at 2.6-angstroms resolution, and we used this structural information to interpret the specificity for selective binding. Two subunits of E3 form a single recognition site for the E3-binding domain of E3BP through their hydrophobic interface. The hydrophobic residues Pro133, Pro154, and Ile157 in the E3-binding domain of E3BP insert themselves into the surface of both E3 polypeptide chains. Numerous ionic and hydrogen bonds between the residues of three interacting polypeptide chains adjacent to the central hydrophobic patch add to the stability of the subcomplex. The specificity of pairing for human E3BP with E3 is interpreted from its subcomplex structure to be most likely due to conformational rigidity of the binding fragment of the E3-binding domain of E3BP and its exquisite amino acid match with the E3 target interface.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/química , Dihidrolipoamida Deshidrogenasa/metabolismo , Péptidos/química , Péptidos/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Complejo Piruvato Deshidrogenasa/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA