Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Lett ; 46(4): 641-669, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687405

RESUMEN

OBJECTIVES: This study aimed to isolate red yeast from sap, bark and slime exudates collected from Polish birch forests and then assessment of their biotechnological potential. RESULTS: 24 strains of red yeast were isolated from the bark, sap and spring slime fluxes of birch (Betula pendula). Strains belonging to Rhodotorula mucilaginosa (6), Rhodosporidiobolus colostri (4), Cystrofilobasidium capitaum (3), Phaffia rhodozyma (3) and Cystobasidium psychroaquaticum (3) were dominant. The highest efficiency of carotenoid biosynthesis (5.04 mg L-1) was obtained by R. mucilaginosa CMIFS 004, while lipids were most efficiently produced by two strains of P. rhodozyma (5.40 and 5.33 g L-1). The highest amount of exopolysaccharides (3.75 g L-1) was produced by the R. glutinis CMIFS 103. Eleven strains showed lipolytic activity, nine amylolytic activity, and only two proteolytic activity. The presence of biosurfactants was not found. The growth of most species of pathogenic moulds was best inhibited by Rhodotorula yeasts. CONCLUSION: Silver birch is a good natural source for the isolation of new strains of red yeast with wide biotechnological potential.


Asunto(s)
Betula , Bosques , Rhodotorula , Betula/microbiología , Betula/química , Polonia , Rhodotorula/metabolismo , Rhodotorula/aislamiento & purificación , Biotecnología/métodos , Basidiomycota/metabolismo , Basidiomycota/aislamiento & purificación , Carotenoides/metabolismo , Carotenoides/química , Corteza de la Planta/microbiología , Corteza de la Planta/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-37646889

RESUMEN

Due to the growing demand for natural carotenoids, researchers have been searching for strains that are capable of efficient synthesis of these compounds. This study tested 114 red yeast strains collected from various natural environments and food specimens in Poland. The strains were isolated by their ability to produce red or yellow pigments in rich nutrient media. According to potential industrial significance of the carotenoids, both their total production and share of individual carotenoids (ß-carotene, γ-carotene, torulene, and torularhodin) were analyzed. The total content of carotenoid pigments in the yeast dry matter ranged from 13.88 to 406.50 µg/g, and the percentages of individual carotenoids highly varied among the strains. Most of the yeast isolates synthesized torulene at the highest amount. Among the studied strains, isolates with a total carotenoid content in biomass greater than 200 µg/g and those containing more than 60% torularhodin were selected for identification (48 strains). The identified strains belonged to six genera: Rhodotorula, Sporidiobolus, Sporobolomyces, Buckleyzyma, Cystofilobasidium, and Erythrobasidium. The largest number of isolates belonged to Rhodotorula babjevae (18), Rhodotorula mucilaginosa (7), Sporidiobolus pararoseus (4), and Rhodotorula glutinis (4).

3.
Open Life Sci ; 17(1): 1117-1128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36133425

RESUMEN

Selenium may influence the biosynthesis of individual proteins in the yeast cell cytosol. In this study, we used two-dimensional (2D) electrophoresis to identify proteins that are differentially expressed by the enrichment of selenium in Saccharomyces cerevisiae yeast cells. We chose eight protein fractions for further proteomic analysis. A detailed analysis was performed using the Ultraflextreme matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometer, which enables fast and accurate measurement of the molecular weight of the analysed proteins. This study, for the first time, provides evidence that selenium-enriched yeast contains higher levels of mitochondria malate dehydrogenase, adenosine-5'-triphosphate (ATP)-dependent RNA helicase dbp3, and tryptophan dimethylallyltransferase, and alanyl-tRNA editing protein AlaX than yeast without the addition of selenium. It should be emphasised that the proteomic variability obtained reflects the high biological and complexity of yeast metabolism under control and selenium-enriched conditions and can be properly used in the future as a model for further research aimed at determining the expression of appropriate metabolic genes.

4.
Mol Biol Rep ; 46(2): 1797-1808, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734169

RESUMEN

Selenium exhibits health-promoting properties in humans and animals. Therefore, the development of selenium-enriched dietary supplements has been growing worldwide. However, it may also exhibit toxicity at higher concentrations, causing increased oxidative stress. Different species of yeasts may exhibit different tolerances toward selenium. Therefore, in this study, we aimed to determine the effect of selenium on growth and on the antioxidative system in Candida utilis ATCC 9950 and Saccharomyces cerevisiae ATCC MYA-2200 yeast cells. The results of this study have demonstrated that high doses of selenium causes oxidative stress in yeasts, thereby increasing the process of lipid peroxidation. In addition, we obtained an increased level of GSSG from aqueous solutions of yeast biomass grown with selenium supplementation (40-60 mg/L). Increased levels of selenium in aqueous solutions resulted in an increase in the activity of antioxidant enzymes, including glutathione peroxidase and glutathione reductase. These results should encourage future research on the possibility of a thorough understanding of antioxidant system functioning in yeast cells.


Asunto(s)
Candida/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Selenio/metabolismo , Selenio/farmacología , Antioxidantes/farmacología , Candida/enzimología , Candida/metabolismo , Proliferación Celular/efectos de los fármacos , Suplementos Dietéticos , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Microb Cell Fact ; 17(1): 49, 2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587755

RESUMEN

Torulene and torularhodin represent the group of carotenoids and are synthesized by yeasts and fungi. The most important producers of these two compounds include yeasts of Rhodotorula and Sporobolomyces genera. The first reports confirming the presence of torulene and torularhodin in the cells of microorganisms date to the 1930s and 1940s; however, only in the past few years, the number of works describing the properties of these compounds increased. These compounds have strong anti-oxidative and anti-microbial properties, and thus may be successfully used as food, feedstock, and cosmetics additives. In addition, tests performed on rats and mice showed that both torulene and torularhodin have anti-cancerous properties. In order to commercialize the production of these two carotenoids, it is necessary to obtain highly efficient yeast strains, for example, via mutagenization and optimization of cultivation conditions. Further studies on the activity of torulene and torularhodin on the human body are also needed.


Asunto(s)
Carotenoides/química , Animales , Humanos , Ratas , Ratas Wistar
6.
Electron. j. biotechnol ; 27: 25-31, May. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1010164

RESUMEN

Background: Rhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis. Results: The highest biomass yield was obtained in media with pH 4.0­7.0, and the value after 72 h was 17.2­19.4 gd.w./L. An initial pH of the medium in the range of 4.0­7.0 has no significant effect on the protein (38.5­41.3 g/100 gd.w.), lipid (10.2­12.7 g/100 gd.w.), or carotenoid (191.7­202.9 µg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1­53.4%), linoleic (21.4­25.1%), and palmitic acids (13.0­15.8%). In these conditions, the yeast mainly synthesized torulene (43.5­47.7%) and ß-carotene (34.7­38.6%), whereas the contribution of torularhodin was only 12.1­16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 µg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis. Conclusion: The different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.


Asunto(s)
Rhodotorula/metabolismo , Carotenoides/biosíntesis , Levaduras , Solanum tuberosum , Proteínas/metabolismo , Biomasa , Aguas Residuales , Glicerol , Concentración de Iones de Hidrógeno , Lípidos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA