Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39195410

RESUMEN

A new two-step method for developing a nanocomposite of polypropylene (PP) decorated with photocatalytically active TiO2 nanoparticles (nTiO2) is proposed. This method involves the low-temperature plasma functionalization of polypropylene followed by the ultrasound-assisted anchoring of nTiO2. The nanoparticles, polymeric substrate, and resultant nanocomposite were thoroughly characterized using nanoparticle tracking analysis (NTA), microscopic observations (SEM, TEM, and EDX), spectroscopic investigations (XPS and FTIR), thermogravimetric analysis (TG/DTA), and water contact angle (WCA) measurements. The photocatalytic activity of the nanocomposites was evaluated through the degradation of methyl orange. The individual TiO2 nanoparticles ranged from 2 to 6 nm in size. The oxygen plasma treatment of PP generated surface functional groups (mainly -OH and -C=O), transforming the surface from hydrophobic to hydrophilic, which facilitated the efficient deposition of nTiO2. Optimized plasma treatment and sonochemical deposition parameters resulted in an active photocatalytic nTiO2/PP system, degrading 80% of the methyl orange under UVA irradiation in 200 min. The proposed approach is considered versatile for the functionalization of polymeric materials with photoactive nanoparticles and, in a broader perspective, can be utilized for the fabrication of self-cleaning surfaces.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535631

RESUMEN

Soot combustion experiments with 5%O2/He were conducted using model soot, and four distinct compositions of CexPr1-xO2-δ oxides of varying nominal cerium compositions (x = 0, 0.2, 0.3, and 1) were prepared. The catalyst samples were comprehensively characterized using techniques such as XRD, Raman spectroscopy, HR-TEM, N2 adsorption at -196 °C, XPS, O2-TPD, H2-TPR, and work function measurements. The Pr-rich compositions, ranging from Ce0.3Pr0.7O2-δ to PrO2-δ, resulted in a significant increase in the total evolved O2 amounts and enhanced catalyst reducibility. However, a decrease in the textural properties of the catalysts was noted, which was particularly important for the pure praseodymia under the synthesis route conducted. The catalytic activity was investigated under the two following contact modes of mixing between soot and catalyst: loose and tight. The results revealed that the catalytic performance is associated with the surface contact in tight contact mode and with the combination of surface/subsurface/bulk oxygen mobility and the BET surface area in loose contact mode. Notably, the temperatures estimated at 10% and 50% of the conversion (T10 and T50) parameters were achieved at much lower temperatures than the uncatalyzed soot combustion, even under loose contact conditions. Specifically, the 50% conversion was achieved at 511 °C and 538 °C for Ce0.3Pr0.7O2 and Ce0.2Pr0.8O2, respectively. While no direct correlation between catalytic activity and work function was observed, a significant relationship emerges between work function values and the formation of oxygen vacancies, whatever the conditions used for these measurements. On the other hand, the ability to generate a high population of oxygen vacancies at low temperatures, rather than the direct activation of gas-phase O2, influences the catalytic performance of Pr-doped ceria catalysts, highlighting the importance of surface/subsurface oxygen vacancy generation, which was the parameter that showed a better correlation with the catalytic activity, whatever the soot conversion value or the mode of contact considered.

3.
Front Chem ; 10: 880884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601550

RESUMEN

As an efficient and durable engine, a diesel engine has a broad application. However, soot particles (PM) and nitrogen oxides (NOx) coming from diesel engines are the main causes of air pollution, so it is necessary to design and prepare an effective catalyst for the simultaneous elimination of PM and NOx. In this work, a novel 3DOM ZrTiO4 support and a series of WxCeMnOδ/3DOM ZrTiO4 catalysts (where x indicates the wt% of W) were designed and fabricated by the colloidal crystal template technique. Among the as-prepared catalysts, the W1CeMnOδ/3DOM ZrTiO4 catalyst exhibits the highest NO conversion rate (52%) at the temperature of maximum CO2 concentration (474°C) and achieves 90% NO conversion in the temperature range of 250-396°C. The excellent catalytic performance is associated with the macroporous structure, abundant oxygen vacancies, sufficient acid sites, and the synergistic effect among the active components. The possible reaction mechanisms of WxCeMnOδ/3DOM ZrTiO4 catalysts were also discussed based on the characterization results.

4.
ACS Biomater Sci Eng ; 7(4): 1403-1413, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33709689

RESUMEN

Partially covered self-expandable metallic esophageal stent (SEMS) placement is the most frequently applied palliative treatment in esophageal cancer. Structural characterization of explanted 16 nitinol-polyurethane SEMS (the group of 6 females, 10 males, age 40-80) was performed after their removal due to dysfunction. The adverse bulk changes in the polymer structure were identified using differential scanning calorimetry (DSC), differential mechanical thermal analysis (DMTA), and attenuated total reflectance infrared spectroscopy (ATR-IR) and discussed in terms of melting point shift (9 °C), glass-transition shift (4 °C), differences in viscoelastic behavior, and systematic decrease of peaks intensities corresponding to C-H, C═O, and C-N polyurethane structural bonds. The scanning electron and confocal microscopic observations revealed all major types of surface degradation, i.e., surface cracks, peeling off of the polymer material, and surface etching. The changes in the hydrophobic polyurethane surfaces were also revealed by a significant decrease in wettability (74°) and the corresponding increase of the surface free energy (31 mJ/m2). To understand the in vivo degradation, the in vitro tests in simulated salivary and gastric fluids were performed, which mimic the environments of proximal and distal ends, respectively. It was concluded that the differences in the degradation of the proximal and distal ends of prostheses strongly depend on the physiological environment, in particular stomach content. Finally, the necessity of the in vivo tests for SEMS degradation is pointed out.


Asunto(s)
Neoplasias Esofágicas , Stents Metálicos Autoexpandibles , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Esofágicas/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cuidados Paliativos , Resultado del Tratamiento
5.
Mater Sci Eng C Mater Biol Appl ; 120: 111703, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545862

RESUMEN

Physicochemical, electrochemical and biological performance of 4 types of all-carbon nanotube layers was studied. Higher oxidation state of carbon was responsible for micro-scaled uniformity of the layers and excellent electrical conductivity, while nitrogen containing functional groups yielded materials with anisotropy similar to natural tissues and reduced work function. All materials were cytocompatible with mammalian fibroblasts (viability >80%, cytotoxicity <3% at day 7) and human dermal fibroblast (viability of cells >70% at day 1), while reducing bacterial and cancer cells proliferation without adding any drug. After 8 h culture, a ~50% depletion in the number of Gram-positive bacteria was observed on materials with lower work function, while Gram-negative bacteria were more sensitive towards carbon coordination number and presence of nitrogen atoms (cell depletion of up to 48% on amidized carbon nanotubes). After 1-day culture, >80% reduction in the melanoma cells number, connected with enhanced production of reactive oxygen species (ROS) was observed. All-carbon nanotube layers decreased bacteria and cancer cell functions without negatively influencing mammalian cells nor using drugs and we believe that this can be explained by various sensitivity of the tested cells towards exogenous ROS overproduction. As the concerns over implant-related infections as well as rates of antibiotic-resistant bacteria and chemotherapeutic-resistant cancer cells are growing, such materials should pave the way for a wide range of biomedical applications.


Asunto(s)
Nanotubos de Carbono , Animales , Antibacterianos/farmacología , Bacterias , Conductividad Eléctrica , Fibroblastos , Humanos
6.
Mater Sci Eng C Mater Biol Appl ; 119: 111614, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321657

RESUMEN

Cell-based therapies have recently emerged as promising strategies for the treatment of cardiovascular disease. Mesenchymal stem cells (MSCs) are a promising cell type that represent a class of adult stem cells characterized by multipotency, high proliferative capacity, paracrine activity, and low immunogenicity. To improve the functional and therapeutic efficacy of MSCs, novel biomaterials are considered as scaffolds/surfaces that promote MSCs growth and differentiation. One of them are graphene-based materials, including graphene oxide (GO) and reduced graphene oxide (rGO). Due to the unique physical, chemical, and biological properties of graphene, scaffolds comprising GO/rGO have been examined as novel platforms to improve the differentiation potential of human MSCs in vitro. We verified different i) size of GO flakes, ii) reduction level, and iii) layer thickness to select the most suitable artificial niche for MSCs culture. The results revealed that graphene-based substrates constitute non-toxic substrates for MSCs. Surfaces with large flakes of GO as well as low reduced rGO are the most biocompatible for MSCs propagation and do not affect their proliferation and survival. Interestingly, small GO flakes and highly reduced rGO decreased MSCs proliferation and induced their apoptosis. We also found that GO and rGO substrates did not alter the MSCs phenotype, cell cycle progression and might modulate the adhesive capabilities of these cells. Importantly, we demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of MSCs in vitro. Thus, our data indicates that graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential.


Asunto(s)
Grafito , Células Madre Mesenquimatosas , Adulto , Materiales Biocompatibles/farmacología , Diferenciación Celular , Corazón , Humanos
7.
Mater Sci Eng C Mater Biol Appl ; 32(1): 31-5, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23177768

RESUMEN

The mechanical and protective properties of parylene N and C coatings (2-20 µm) on stainless steel 316L implant materials were investigated. The coatings were characterized by scanning electron and confocal microscopes, microindentation and scratch tests, whereas their protective properties were evaluated in terms of quenching metal ion release from stainless steel to simulated body fluid (Hanks solution). The obtained results revealed that for parylene C coatings, the critical load for initial cracks is 3-5 times higher and the total metal ions release is reduced 3 times more efficiently compared to parylene N. It was thus concluded that parylene C exhibits superior mechanical and protective properties for application as a micrometer coating material for stainless steel implants.


Asunto(s)
Materiales Biocompatibles Revestidos , Polímeros , Prótesis e Implantes , Acero Inoxidable , Xilenos , Líquidos Corporales , Cromo/química , Hierro/química , Ensayo de Materiales , Fenómenos Mecánicos , Níquel/química
8.
Phys Chem Chem Phys ; 11(21): 4351-9, 2009 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-19458838

RESUMEN

The promoter action of alkali atoms, such as K atoms, at heterogeneous catalyst surfaces has been used in industrial catalysis for many decades, giving improved activity and selectivity in the catalyzed chemical reactions. Several mechanisms for this promotion effect have been proposed, among which the Rydberg excitation mechanism is well-supported by experiments from our groups. Further experiments now show that even doubly excited K Rydberg species are formed at an industrial catalyst (styrene catalyst) surface. This indicates that a large excitation energy of >30 eV can easily accumulate in an atomic or molecular species. The methods used for the identification of the excited species are pulsed laser-induced TOF-MS and intracavity stimulated emission. The doubly excited states are formed at the surface of the catalyst by thermal excitation through selective excitation and energy-pooling processes and are here observed outside the surface in the extended boundary layer. Experiments with ionization energy transfer indicate that no energy matching is required in reactions driven by the excitation energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA