Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38717933

RESUMEN

CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.


Asunto(s)
Aromatasa , Regulación de la Expresión Génica , Placenta , Estabilidad del ARN , Factor de Transcripción AP-2 , Regiones Promotoras Genéticas , Aromatasa/genética , Humanos , Línea Celular , Placenta/citología , Placenta/metabolismo , Proteína de Unión a CREB/metabolismo , Cromatina , Factor de Transcripción AP-2/metabolismo , Adenosina/análogos & derivados , Adenosina/uso terapéutico
2.
PLoS One ; 10(5): e0128282, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26020632

RESUMEN

The human CYP19 gene encodes aromatase, which converts androgens to estrogens. CYP19 mRNA variants are transcribed mainly from three promoters. Quantitative RT-PCR was used to measure the relative amounts of each of the three transcripts and determine the on/off state of the promoters. While some of the promoters were silent, CYP19 mRNA production differed among the other promoters, whose estimated transcription levels were 0.001% to 0.1% of that of the TUBB control gene. To investigate the structural aspects of chromatin that were responsible for this wide range of activity of the CYP19 promoters, we used a fractionation protocol, designated SEVENS, which sequentially separates densely packed nucleosomes from dispersed nucleosomes. The fractional distribution of each inactive promoter showed a similar pattern to that of the repressed reference loci; the inactive regions were distributed toward lower fractions, in which closed chromatin comprising packed nucleosomes was enriched. In contrast, active CYP19 promoters were raised toward upper fractions, including dispersed nucleosomes in open chromatin. Importantly, these active promoters were moderately enriched in the upper fractions as compared to active reference loci, such as the TUBB promoter; the proportion of open chromatin appeared to be positively correlated to the promoter strength. These results, together with ectopic transcription accompanied by an increase in the proportion of open chromatin in cells treated with an H3K27me inhibitor, indicate that CYP19 mRNA could be transcribed from a promoter in which chromatin is shifted toward an open state in the equilibrium between closed and open chromatin.


Asunto(s)
Aromatasa/biosíntesis , Ensamble y Desensamble de Cromatina/fisiología , Cromatina/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Regiones Promotoras Genéticas/fisiología , Transcripción Genética/fisiología , Aromatasa/genética , Cromatina/genética , Células HeLa , Células Hep G2 , Humanos
3.
J Virol ; 85(6): 3001-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209109

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL), a malignancy of CD4(+) T cells whose etiology is thought to be associated with the viral trans-activator Tax. We have shown recently that Tax can drastically upregulate the expression of p27(Kip1) and p21(CIP1/WAF1) through protein stabilization and mRNA trans-activation and stabilization, respectively. The Tax-induced surge in p21(CIP1/WAF1) and p27(Kip1) begins in S phase and results in cellular senescence. Importantly, HeLa and SupT1 T cells infected by HTLV-1 also arrest in senescence, thus challenging the notion that HTLV-1 infection causes cell proliferation. Here we use time-lapse microscopy to investigate the effect of Tax on cell cycle progression in two reporter cell lines, HeLa/18x21-EGFP and HeLa-FUCCI, that express enhanced green fluorescent protein (EGFP) under the control of 18 copies of the Tax-responsive 21-bp repeat element and fluorescent ubiquitin cell cycle indicators, respectively. Tax-expressing HeLa cells exhibit elongated or stalled cell cycle phases. Many of them bypass mitosis and become single senescent cells as evidenced by the expression of senescence-associated ß-galactosidase. Such cells have twice the normal equivalent of cellular contents and hence are enlarged, with exaggerated nuclei. Interestingly, nocodazole treatment revealed a small variant population of HeLa/18x21-EGFP cells that could progress into mitosis normally with high levels of Tax expression, suggesting that genetic or epigenetic changes that prevent Tax-induced senescence can occur spontaneously at a detectable frequency.


Asunto(s)
Ciclo Celular/fisiología , Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Fusión Artificial Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Microscopía por Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA