Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 272(1): 245-55, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23707608

RESUMEN

Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colesterol/metabolismo , Crizotinib , Canal de Potasio ERG1 , Activación Enzimática/efectos de los fármacos , Clorhidrato de Erlotinib , Canales de Potasio Éter-A-Go-Go/biosíntesis , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Indoles/toxicidad , Canales Iónicos/efectos de los fármacos , Lípidos/biosíntesis , Miocitos Cardíacos/ultraestructura , Técnicas de Placa-Clamp , Células Madre Pluripotentes/efectos de los fármacos , Pirazoles/toxicidad , Piridinas/toxicidad , Pirimidinas/toxicidad , Pirroles/toxicidad , Quinazolinas/toxicidad , ARN/biosíntesis , ARN/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Sunitinib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA