Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Rep ; 13(1): 14471, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660155

RESUMEN

The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the ß-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.


Asunto(s)
Amiloidosis , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Humanos , Diclofenaco/farmacología , Proteínas Amiloidogénicas , Prostaglandina-Endoperóxido Sintasas
2.
PLoS One ; 15(3): e0221006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187190

RESUMEN

Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/enzimología , Drosophila melanogaster/fisiología , Músculos/anatomía & histología , Músculos/metabolismo , Sistema Nervioso/anatomía & histología , Sistema Nervioso/metabolismo , Proteínas Quinasas/aislamiento & purificación , Animales , Tipificación del Cuerpo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Ojo/embriología , Larva/metabolismo , Masculino , Músculos/citología , Sistema Nervioso/citología , Unión Neuromuscular/metabolismo , Tamaño de los Órganos , Fosforilación , Sinapsis/metabolismo
3.
Neuron ; 95(4): 808-816.e9, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817800

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 10-6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mutación/genética , Proteínas de Unión a Poli(A)/genética , Adulto , Anciano , Proteínas de Unión al ADN/metabolismo , Salud de la Familia , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Masculino , Microscopía Confocal , Persona de Mediana Edad , Proteína FUS de Unión a ARN/metabolismo , Estrés Fisiológico/fisiología , Antígeno Intracelular 1 de las Células T , Factores de Tiempo , Transfección
4.
Front Neurol ; 8: 75, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28337172

RESUMEN

Bone marrow-derived cells (BMDCs) are capable of migrating across the blood-brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60-125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism alone is not sufficient to induce BMDC accumulation within the CNS and that CNS conditioning is a crucial requirement for BMDC accumulation to occur. Moreover, it appears that proliferation of BMDCs that infiltrate the CNS is partly responsible for cell accumulation in busulfan-conditioned ALS mice.

5.
J Vis Exp ; (98): e52553, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25867947

RESUMEN

Bone marrow transplantation (BMT) is often used to replace the bone marrow (BM) compartment of recipient mice with BM cells expressing a distinct biomarker isolated from donor mice. This technique allows for identification of donor-derived hematopoietic cells within the recipient mice, and can be used to isolate and characterize donor cells using various biochemical techniques. BMT typically relies on myeloablative conditioning with total body irradiation to generate niche space within the BM compartment of recipient mice for donor cell engraftment. The protocol we describe here uses myelosuppressive conditioning with the chemotherapeutic agent busulfan. Unlike irradiation, which requires the use of specialized facilities, busulfan conditioning is performed using intraperitoneal injections of 20 mg/kg busulfan until a total dose of 60-100 mg/kg has been administered. Moreover, myeloablative irradiation can have toxic side effects and requires successful engraftment of donor cells for survival of recipient mice. In contrast, busulfan conditioning using these doses is generally well tolerated and mice survive without donor cell support. Donor BM cells are isolated from the femurs and tibiae of mice ubiquitously expressing green fluorescent protein (GFP), and injected into the lateral tail vein of conditioned recipient mice. BM chimerism is estimated by quantifying the number of GFP+ cells within the peripheral blood following BMT. Levels of chimerism >80% are typically observed in the peripheral blood 3-4 weeks post-transplant and remain established for at least 1 year. As with irradiation, conditioning with busulfan and BMT allows for the accumulation of donor BM-derived cells within the central nervous system (CNS), particularly in mouse models of neurodegeneration. This busulfan-mediated CNS accumulation may be more physiological than total body irradiation, as the busulfan treatment is less toxic and CNS inflammation appears to be less extensive. We hypothesize that these cells can be genetically engineered to deliver therapeutics to the CNS.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Trasplante de Médula Ósea/métodos , Busulfano/farmacología , Agonistas Mieloablativos/farmacología , Quimera por Trasplante , Acondicionamiento Pretrasplante/métodos , Animales , Células de la Médula Ósea/citología , Sistema Nervioso Central/citología , Ratones , Ratones Endogámicos C57BL , Irradiación Corporal Total
6.
J Vis Exp ; (95): 52139, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25650626

RESUMEN

Discs large (Dlg) is a conserved member of the membrane-associated guanylate kinase family, and serves as a major scaffolding protein at the larval neuromuscular junction (NMJ) in Drosophila. Previous studies have shown that the postsynaptic distribution of Dlg at the larval NMJ overlaps with that of Hu-li tai shao (Hts), a homologue to the mammalian adducins. In addition, Dlg and Hts are observed to form a complex with each other based on co-immunoprecipitation experiments involving whole adult fly lysates. Due to the nature of these experiments, however, it was unknown whether this complex exists specifically at the NMJ during larval development. Proximity Ligation Assay (PLA) is a recently developed technique used mostly in cell and tissue culture that can detect protein-protein interactions in situ. In this assay, samples are incubated with primary antibodies against the two proteins of interest using standard immunohistochemical procedures. The primary antibodies are then detected with a specially designed pair of oligonucleotide-conjugated secondary antibodies, termed PLA probes, which can be used to generate a signal only when the two probes have bound in close proximity to each other. Thus, proteins that are in a complex can be visualized. Here, it is demonstrated how PLA can be used to detect in situ protein-protein interactions at the Drosophila larval NMJ. The technique is performed on larval body wall muscle preparations to show that a complex between Dlg and Hts does indeed exist at the postsynaptic region of NMJs.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Unión Neuromuscular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Unión a Calmodulina/análisis , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/análisis , Guanilato-Quinasas/metabolismo , Inmunohistoquímica , Larva/química , Larva/metabolismo , Unión Neuromuscular/química , Mapeo de Interacción de Proteínas/métodos , Proteínas Supresoras de Tumor/análisis
7.
Neurosci Lett ; 588: 196-201, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25582787

RESUMEN

Previous work has suggested that bone marrow (BM)-derived cells (BMDCs) accumulate within the CNS and could potentially associate with ß-amyloid plaques in Alzheimer's disease (AD). To explore the accumulation of BMDCs in murine AD, we transplanted green fluorescent protein (GFP)-labeled BM cells into triple transgenic (3×Tg) and wild-type (wt) mice using non-irradiative myelosuppresive conditioning with busulfan (BU). We find that BU (80mg/kg) is sufficient to obtain adequate chimerism (>85%) in wt mice. In order to obtain appreciable non-irradiative chimerism in the 3×Tg mice (>80%), anti-asialo ganglio-N-tetraosylceramide (α-ASGM-1) antibody was also used to reduce natural killer cell function and thereby abrogate the hybrid resistance of the 3×Tg mouse strain. Using BU conditioning and α-ASGM-1 together, we observed sustained BM chimerism and BMDC accumulation within the CNS of the 3×Tg and wt mice. In cortex and hippocampus, BMDC accumulation was perivascular in distribution and similar between 3×Tg and wt mice, with no clear association between BMDCs and AD plaques. We conclude that non-irradiative BM chimerism can be achieved with BU in 3×Tg mice, but requires α-ASGM-1 (or similar appropriate NK-cell depletion). Use of this chimerism protocol permits BMDCs accumulation in the CNS of mixed strain recipient mice although BMDCs appear to be largely perivascular within cortex and hippocampus.


Asunto(s)
Enfermedad de Alzheimer/patología , Células de la Médula Ósea/efectos de los fármacos , Busulfano/farmacología , Animales , Células de la Médula Ósea/patología , Trasplante de Médula Ósea , Encéfalo/patología , Ratones Transgénicos , Médula Espinal/patología , Quimera por Trasplante , Acondicionamiento Pretrasplante
8.
PLoS One ; 8(4): e60661, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593276

RESUMEN

Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (~80%). Bone marrow-derived cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative preconditioning.


Asunto(s)
Esclerosis Amiotrófica Lateral/inmunología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Trasplante de Médula Ósea , Busulfano/farmacología , Médula Espinal/inmunología , Acondicionamiento Pretrasplante/métodos , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/cirugía , Animales , Células de la Médula Ósea/inmunología , Recuento de Células , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Fenotipo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
9.
Nat Neurosci ; 14(9): 1142-9, 2011 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-21804537

RESUMEN

In multiple sclerosis and the experimental autoimmune encephalitis (EAE) mouse model, two pools of morphologically indistinguishable phagocytic cells, microglia and inflammatory macrophages, accrue from proliferating resident precursors and recruitment of blood-borne progenitors, respectively. Whether these cell types are functionally equivalent is hotly debated, but is challenging to address experimentally. Using a combination of parabiosis and myeloablation to replace circulating progenitors without affecting CNS-resident microglia, we found a strong correlation between monocyte infiltration and progression to the paralytic stage of EAE. Inhibition of chemokine receptor-dependent recruitment of monocytes to the CNS blocked EAE progression, suggesting that these infiltrating cells are essential for pathogenesis. Finally, we found that, although microglia can enter the cell cycle and return to quiescence following remission, recruited monocytes vanish, and therefore do not ultimately contribute to the resident microglial pool. In conclusion, we identified two distinct subsets of myelomonocytic cells with distinct roles in neuroinflammation and disease progression.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/patología , Microglía/fisiología , Monocitos/fisiología , Animales , Trasplante de Médula Ósea/métodos , Bromodesoxiuridina/metabolismo , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/prevención & control , Encefalomielitis Autoinmune Experimental/cirugía , Femenino , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Inflamación/terapia , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Agonistas Mieloablativos/efectos adversos , Parabiosis/métodos , Receptores CCR2/deficiencia , Receptores de Interleucina-8A/genética , Índice de Severidad de la Enfermedad , Factores de Tiempo , Irradiación Corporal Total/efectos adversos
10.
Dev Biol ; 357(2): 392-403, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21791202

RESUMEN

Adducin is a cytoskeletal protein having regulatory roles that involve actin filaments, functions that are inhibited by phosphorylation of adducin by protein kinase C. Adducin is hyperphosphorylated in nervous system tissue in patients with the neurodegenerative disease amyotrophic lateral sclerosis, and mice lacking ß-adducin have impaired synaptic plasticity and learning. We have found that Drosophila adducin, encoded by hu-li tai shao (hts), is localized to the post-synaptic larval neuromuscular junction (NMJ) in a complex with the scaffolding protein Discs large (Dlg), a regulator of synaptic plasticity during growth of the NMJ. hts mutant NMJs are underdeveloped, whereas over-expression of Hts promotes Dlg phosphorylation, delocalizes Dlg away from the NMJ, and causes NMJ overgrowth. Dlg is a component of septate junctions at the lateral membrane of epithelial cells, and we show that Hts regulates Dlg localization in the amnioserosa, an embryonic epithelium, and that embryos doubly mutant for hts and dlg exhibit defects in epithelial morphogenesis. The phosphorylation of Dlg by the kinases PAR-1 and CaMKII has been shown to disrupt Dlg targeting to the NMJ and we present evidence that Hts regulates Dlg targeting to the NMJ in muscle and the lateral membrane of epithelial cells by controlling the protein levels of PAR-1 and CaMKII, and consequently the extent of Dlg phosphorylation.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Células Epiteliales/citología , Epitelio/embriología , Larva/citología , Larva/metabolismo , Modelos Biológicos , Músculos/metabolismo , Mutagénesis Insercional/genética , Unión Neuromuscular/citología , Unión Neuromuscular/embriología , Unión Neuromuscular/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas
11.
Muscle Nerve ; 42(2): 170-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20544928

RESUMEN

Mutations in the fused in sarcoma (FUS) gene have recently been found to cause familial amyotrophic lateral sclerosis (FALS). We screened FUS in a cohort of 200 ALS patients [32 FALS and 168 sporadic ALS (SALS)]. In one FALS proband, we identified a mutation (p.R521C) that was also present in her affected daughter. Their clinical phenotype was remarkably similar and atypical of classic ALS, with symmetric proximal pelvic and pectoral weakness. Distal weakness and upper motor neuron features only developed late. Neuropathological examination demonstrated FUS-immunoreactive neuronal and glial inclusions in the spinal cord and many extramotor regions, but no TDP-43 pathology. We also identified a novel mutation (p.G187S) in one SALS patient. Overall, FUS mutations accounted for 3% of our non-SOD1, non-TARDBP FALS cases and 0.6% of SALS. This study demonstrates that the phenotype with FUS mutations extends beyond classical ALS cases. Our findings suggest there are specific clinicogenetic correlations and provide the first detailed neuropathological description.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/metabolismo , Proteína FUS de Unión a ARN/genética , Médula Espinal/metabolismo , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Femenino , Pruebas Genéticas , Genotipo , Humanos , Inmunohistoquímica , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Neuronas Motoras/patología , Mutación , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Proteína FUS de Unión a ARN/metabolismo , Médula Espinal/patología
12.
Glia ; 57(13): 1410-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19243075

RESUMEN

Amyotrophic lateral sclerosis (ALS) is associated with increased numbers of microglia within the CNS. However, it is unclear to what extent bone marrow (BM)-derived cells contribute to this microgliosis. We have studied the adoptive transfer of green fluorescent protein (GFP)-labeled whole BM cells and BM from mice that express GFP only in CX(3)CR1+ cells (CX(3)CR1(+/GFP)) into the CNS of a murine model of ALS having over-expression of mutant superoxide dismutase (mSOD), and wt littermates. We find that most GFP+ and CX(3)CR1(+/GFP) cells are found adjacent to the microvasculature within the CNS, both in mSOD and wt mice. GFP+ and CX(3)CR1(+/GFP) cells within the CNS have a variety of morphologies, including cells with an elongated appearance, weak Iba-1 immunoreactivity, and often mannose receptor immunoreactivity, indicating that these cells are perivascular microglia. Typically, less than 10% of BM-derived cells had a stellate-shape and expressed strong Iba-1 immunoreactivity, as expected for parenchymal microglia, indicating that BM-derived cells uncommonly generate parenchymal microglia. Adoptive transfer of BM-derived cells from CX(3)CR1(+/GFP) mice revealed that many elongated cells are GFP+, demonstrating that some perivascular cells are derived from BM cells of the CX(3)CR1+ lineage. The significantly greater numbers of BM cells in mSOD than in control mice indicate that the presence of these BM cells in the spinal cord is regulated by conditioning stimuli that may include irradiation and inflammatory factors within the CNS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Vasos Sanguíneos/fisiopatología , Células de la Médula Ósea/fisiología , Receptores de Quimiocina/metabolismo , Médula Espinal/fisiopatología , Esclerosis Amiotrófica Lateral/patología , Animales , Vasos Sanguíneos/citología , Células de la Médula Ósea/citología , Receptor 1 de Quimiocinas CX3C , Recuento de Células , Forma de la Célula , Quimera , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/fisiología , Mutación Missense , Médula Espinal/irrigación sanguínea , Médula Espinal/citología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
13.
Muscle Nerve ; 37(5): 620-5, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18335482

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons in the brain, brainstem, and spinal cord. It has been proposed that bone marrow (BM)-derived cells might supply motor neurons and other cells with a cellular milieu more conducive to survival in ALS. Direct injection of stem cells in ALS is problematic because of the large expanse of the neuraxis that would need to be injected. We reasoned that transiently increasing the number of circulating hematopoietic stem cells might be a useful therapeutic approach. However, agents stimulating the activation and mobilization of hematopoietic stem cells may have adverse effects such as activation of microglial cells. We conducted a small pilot trial of the collection and reinfusion of granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells (PBSC) in ALS patients and found no adverse effects, paving the way for a properly powered therapeutic trial with an optimized regimen of G-CSF.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/fisiología , Trasplante de Células Madre de Sangre Periférica/métodos , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Autopsia , Estudios de Evaluación como Asunto , Movilización de Célula Madre Hematopoyética/métodos , Humanos , Fuerza Muscular , Proyectos Piloto , Factores de Tiempo
14.
Nat Neurosci ; 10(12): 1538-43, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18026097

RESUMEN

Microgliosis is a common response to multiple types of damage in the CNS. However, the origin of the cells involved in this process is still controversial and the relative importance of local expansion versus recruitment of microglia progenitors from the bloodstream is unclear. Here, we investigated the origin of microglia using chimeric animals obtained by parabiosis. We found no evidence of microglia progenitor recruitment from the circulation in denervation or CNS neurodegenerative disease, suggesting that maintenance and local expansion of microglia are solely dependent on the self-renewal of CNS resident cells in these models.


Asunto(s)
Enfermedades del Sistema Nervioso Central/patología , Sistema Nervioso Central/patología , Microglía/fisiología , Degeneración Nerviosa/patología , Animales , Axotomía/métodos , Trasplante de Médula Ósea/métodos , Proteínas de Unión al Calcio/metabolismo , Recuento de Células , Enfermedades del Sistema Nervioso Central/complicaciones , Enfermedades del Sistema Nervioso Central/inmunología , Enfermedades del Sistema Nervioso Central/cirugía , Modelos Animales de Enfermedad , Enfermedades del Nervio Facial/patología , Enfermedades del Nervio Facial/fisiopatología , Proteínas Fluorescentes Verdes/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos , Degeneración Nerviosa/etiología , Degeneración Nerviosa/inmunología , Degeneración Nerviosa/cirugía , Parabiosis/métodos , Quimera por Radiación , Células Madre/fisiología , Superóxido Dismutasa/genética , Factores de Tiempo
15.
Glia ; 53(7): 744-53, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16518833

RESUMEN

Amyotrophic lateral sclerosis (ALS) is associated with increased numbers of microglia within the central nervous system (CNS). However, it is unknown whether the microgliosis results from proliferation of CNS resident microglia, or recruitment of bone marrow (BM)-derived microglial precursors. Here we assess the distribution and number of BM-derived cells in spinal cord using transplantation of green fluorescent protein (GFP)-labeled BM cells into myelo-ablated mice over-expressing human mutant superoxide dismutase 1 (mSOD), a murine model of ALS. Transplantation of GFP+ BM did not affect the rate of disease progression in mSOD mice. Mean numbers of microglia and GFP+ cells in spinal cords of control mice were not significantly different from those in asymptomatic mSOD mice and showed no change with animal age. The number of GFP+ cells and microglia (F4/80+ and CD11b+ cells) within the spinal cord of mSOD mice increased compared to age-matched controls at a time when mSOD mice exhibited disease symptoms, continuing up to disease end-stage. Although we observed an increase in the number of GFP+ cells in spinal cords of mSOD mice with disease symptoms, mean numbers of GFP+ F4/80+ cells comprised less than 20% of all F4/80+ cells and did not increase with disease progression. Furthermore, the relative rates of proliferation in CD45+GFP- and CD45+GFP+ cells were comparable. Thus, we demonstrate that the microgliosis present in spinal cord tissue of mSOD mice is primarily due to an expansion of resident microglia and not to the recruitment of microglial precursors from the circulation.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Células de la Médula Ósea/citología , Linaje de la Célula/fisiología , Gliosis/fisiopatología , Microglía/citología , Médula Espinal/fisiopatología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Recuento de Células , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Gliosis/metabolismo , Gliosis/patología , Proteínas Fluorescentes Verdes , Humanos , Antígenos Comunes de Leucocito/inmunología , Ratones , Ratones Transgénicos , Microglía/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA