Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neurochem Int ; 112: 5-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29111377

RESUMEN

Deubiquitinating enzymes (DUBs) play important roles in a variety of cellular processes, including regulation of protein homeostasis. The DUB ataxin-3 is an enzyme implicated in protein quality control mechanisms. In the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3), ataxin-3 contains an expanded polyglutamine (polyQ) stretch that leads to aggregation of the protein and neuronal dysfunction. Increasing the understanding of ataxin-3 protein interaction partners could help to elucidate disease mechanisms. Hence, we analyzed the repertoire of proteins interacting with normal and polyQ expanded ataxin-3 by mass spectrometry. This showed that both normal and polyQ expanded ataxin-3 interacted with components of the protein quality control system and mitochondria. Five proteins showed increased interaction with polyQ expanded ataxin-3 relative to normal and three of these were mitochondrial proteins. The analyses underline the role of ataxin-3 in ubiquitin biology and point towards a role in mitochondrial biology.


Asunto(s)
Ataxina-3/análisis , Ataxina-3/metabolismo , Mitocondrias/metabolismo , Péptidos/análisis , Péptidos/metabolismo , Mapas de Interacción de Proteínas/fisiología , Animales , Ataxina-3/genética , Células HEK293 , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Espectrometría de Masas/métodos , Ratones , Ratones Transgénicos , Mitocondrias/genética , Péptidos/genética
2.
Neurochem Int ; 105: 42-50, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28065793

RESUMEN

Ubiquitination and phosphorylation of proteins represent post translational modifications (PTMs) capable of regulating a variety of cellular processes. In the neurodegenerative disorder spinocerebellar ataxia type 3 (SCA3), the disease causing protein ataxin-3 carries an expanded polyglutamine (polyQ) stretch causing it to aggregate in nuclear inclusions. These inclusions are decorated with ubiquitin suggestive of a malfunction in the clearance of the mutant protein. Differences in ubiquitin chain topology between normal and polyQ expanded ataxin-3 could be involved in the differential clearance of the two proteins and play a role in SCA3 pathogenesis. Likewise, changes in phosphorylation patterns between the two variants could contribute to pathogenic processes involved in SCA3. We therefore determined the ubiquitination and phosphorylation patterns, together with the ubiquitin-linkage types associated with normal and polyQ expanded ataxin-3 by mass spectrometry (MS). This analysis revealed a similar ubiquitin linkage pattern on normal and expanded ataxin-3. However, the distribution of ubiquitinated lysine residues was altered in polyQ expanded ataxin-3, with increased ubiquitination at the new identified ubiquitination site lysine-8. MS analysis of phosphorylation also revealed novel phosphorylation sites in ataxin-3, and an increase in phosphorylation of expanded ataxin-3 at several positions. The study suggests that differences in clearance of normal and expanded ataxin-3 are not attributed to differences in ubiquitin-linkage pattern. However, the observed differences between the normal and polyQ expanded ataxin-3 with respect to the degree of ubiquitination and phosphorylation on specific sites may have an impact on ataxin-3 function and SCA3 pathogenesis.


Asunto(s)
Ataxina-3/genética , Ataxina-3/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Células HEK293 , Humanos , Fosforilación/fisiología
3.
Mol Metab ; 2(4): 376-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327954

RESUMEN

The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the ß1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA