Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941296

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α-targeted therapies and deplete pathogenically stabilized HIF-2α.


Asunto(s)
Acetato CoA Ligasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Transducción de Señal , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Línea Celular Tumoral , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Animales , Ratones , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
2.
J Extracell Vesicles ; 12(11): e12366, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885043

RESUMEN

Extracellular vesicle (EV)-carried miRNAs can influence gene expression and functional phenotypes in recipient cells. Argonaute 2 (Ago2) is a key miRNA-binding protein that has been identified in EVs and could influence RNA silencing. However, Ago2 is in a non-vesicular form in serum and can be an EV contaminant. In addition, RNA-binding proteins (RBPs), including Ago2, and RNAs are often minor EV components whose sorting into EVs may be regulated by cell signaling state. To determine the conditions that influence detection of RBPs and RNAs in EVs, we evaluated the effect of growth factors, oncogene signaling, serum, and cell density on the vesicular and nonvesicular content of Ago2, other RBPs, and RNA in small EV (SEV) preparations. Media components affected both the intravesicular and extravesicular levels of RBPs and miRNAs in EVs, with serum contributing strongly to extravesicular miRNA contamination. Furthermore, isolation of EVs from hollow fiber bioreactors revealed complex preparations, with multiple EV-containing peaks and a large amount of extravesicular Ago2/RBPs. Finally, KRAS mutation impacts the detection of intra- and extra-vesicular Ago2. These data indicate that multiple cell culture conditions and cell states impact the presence of RBPs in EV preparations, some of which can be attributed to serum contamination.


Asunto(s)
Proteínas Argonautas , Vesículas Extracelulares , MicroARNs , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Proteínas Argonautas/metabolismo
3.
Dev Cell ; 58(20): 2048-2062.e7, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37832537

RESUMEN

To maximize solute transport, epithelial cells build an apical "brush border," where thousands of microvilli are linked to their neighbors by protocadherin-containing intermicrovillar adhesion complexes (IMACs). Previous studies established that the IMAC is needed to build a mature brush border, but how this complex contributes to the accumulation of new microvilli during differentiation remains unclear. We found that early in differentiation, mouse, human, and porcine epithelial cells exhibit a marginal accumulation of microvilli, which span junctions and interact with protrusions on neighboring cells using IMAC protocadherins. These transjunctional IMACs are highly stable and reinforced by tension across junctions. Finally, long-term live imaging showed that the accumulation of microvilli at cell margins consistently leads to accumulation in medial regions. Thus, nascent microvilli are stabilized by a marginal capture mechanism that depends on the formation of transjunctional IMACs. These results may offer insights into how apical specializations are assembled in diverse epithelial systems.


Asunto(s)
Células Epiteliales , Humanos , Animales , Ratones , Porcinos , Microvellosidades/metabolismo , Células Epiteliales/metabolismo
4.
Gastroenterology ; 165(2): 374-390, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196797

RESUMEN

BACKGROUND & AIMS: Elements of field cancerization, including atrophic gastritis, metaplasia, and dysplasia, promote gastric cancer development in association with chronic inflammation. However, it remains unclear how stroma changes during carcinogenesis and how the stroma contributes to progression of gastric preneoplasia. Here we investigated heterogeneity of fibroblasts, one of the most important elements in the stroma, and their roles in neoplastic transformation of metaplasia. METHODS: We used single-cell transcriptomics to evaluate the cellular heterogeneity of mucosal cells from patients with gastric cancer. Tissue sections from the same cohort and tissue microarrays were used to identify the geographical distribution of distinct fibroblast subsets. We further evaluated the role of fibroblasts from pathologic mucosa in dysplastic progression of metaplastic cells using patient-derived metaplastic gastroids and fibroblasts. RESULTS: We identified 4 subsets of fibroblasts within stromal cells defined by the differential expression of PDGFRA, FBLN2, ACTA2, or PDGFRB. Each subset was distributed distinctively throughout stomach tissues with different proportions at each pathologic stage. The PDGFRα+ subset expanded in metaplasia and cancer compared with normal, maintaining a close proximity with the epithelial compartment. Co-culture of metaplasia- or cancer-derived fibroblasts with gastroids showing the characteristics of spasmolytic polypeptide-expressing metaplasia-induced disordered growth, loss of metaplastic markers, and increases in markers of dysplasia. Culture of metaplastic gastroids with conditioned media from metaplasia- or cancer-derived fibroblasts also promoted dysplastic transition. CONCLUSIONS: These findings indicate that fibroblast associations with metaplastic epithelial cells can facilitate direct transition of metaplastic spasmolytic polypeptide-expressing metaplasia cell lineages into dysplastic lineages.


Asunto(s)
Mucosa Gástrica , Neoplasias Gástricas , Humanos , Mucosa Gástrica/patología , Neoplasias Gástricas/patología , Hiperplasia , Metaplasia/patología , Fibroblastos/metabolismo
5.
Surgery ; 173(1): 67-75, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400581

RESUMEN

BACKGROUND: Recent advancements in 3-dimensional patient-derived organoid models have revolutionized the field of cancer biology. There is an urgent need for development of endocrine tumor organoid models for medullary thyroid carcinoma, adrenocortical carcinoma, papillary thyroid carcinoma, and a spectrum of benign hyperfunctioning parathyroid and adrenal neoplasms. We aimed to engineer functionally intact 3-dimensional endocrine patient-derived organoids to expand the in vitro and translational applications for the advancement of endocrine research. METHODS: Using our recently developed fine needle aspiration-based methodology, we established patient-derived 3-dimensional endocrine organoid models using prospectively collected human papillary thyroid carcinoma (n = 6), medullary thyroid carcinoma (n = 3), adrenocortical carcinoma (n = 3), and parathyroid (n = 5). and adrenal (n = 5) neoplasms. Multiplatform analyses of endocrine patient-derived organoids and applications in oncoimmunology, near-infrared autofluorescence, and radiosensitization studies under 3-dimensional in vitro conditions were performed. RESULTS: We have successfully modeled and analyzed the complex endocrine microenvironment for a spectrum of endocrine neoplasms in 3-dimensional culture. The endocrine patient-derived organoids recapitulated complex tumor microenvironment of endocrine neoplasms morphologically and functionally and maintained cytokine production and near-infrared autofluorescence properties. CONCLUSION: Our novel engineered endocrine patient-derived organoid models of thyroid, parathyroid and adrenal neoplasms represent an exciting and elegant alternative to current limited 2-dimensional systems and afford future broad multiplatform in vitro and translational applications, including in endocrine oncoimmunology.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Neoplasias de la Tiroides , Humanos , Organoides , Microambiente Tumoral , Neoplasias de la Tiroides/patología , Neoplasias de las Glándulas Suprarrenales/patología
6.
Dev Cell ; 57(8): 974-994.e8, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35421371

RESUMEN

RNA transfer via extracellular vesicles (EVs) influences cell phenotypes; however, lack of information regarding biogenesis of RNA-containing EVs has limited progress in the field. Here, we identify endoplasmic reticulum membrane contact sites (ER MCSs) as platforms for the generation of RNA-containing EVs. We identify a subpopulation of small EVs that is highly enriched in RNA and regulated by the ER MCS linker protein VAP-A. Functionally, VAP-A-regulated EVs are critical for miR-100 transfer between cells and in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed reductions in the EV biogenesis lipid ceramide. Knockdown of the VAP-A-binding ceramide transfer protein CERT led to similar defects in EV RNA content. Imaging experiments revealed that VAP-A promotes luminal filling of multivesicular bodies (MVBs), CERT localizes to MVBs, and the ceramide-generating enzyme neutral sphingomyelinase 2 colocalizes with VAP-A-positive ER. We propose that ceramide transfer via VAP-A-CERT linkages drives the biogenesis of a select RNA-containing EV population.


Asunto(s)
Vesículas Extracelulares , Aparato de Golgi , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Vesículas Extracelulares/metabolismo , Aparato de Golgi/metabolismo , Proteínas Serina-Treonina Quinasas , ARN/metabolismo
7.
J Clin Invest ; 131(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623320

RESUMEN

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Asunto(s)
Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Uniones Estrechas/metabolismo , Adolescente , Adulto , Anciano , Animales , Claudinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Técnicas In Vitro , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Permeabilidad , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 2/deficiencia , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Uniones Estrechas/patología , Adulto Joven
8.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34406412

RESUMEN

In polarized MDCK cells, disruption of the tyrosine-based YXXΦ basolateral trafficking motif (Y156A) in the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG), results in its apical mistrafficking and transformation in vivo. However, the mechanisms underlying these dramatic effects are unknown. Using a doxycycline-inducible system in 3D Matrigel cultures, we now show that induction of Y156A EREG in fully formed MDCK cysts results in direct and complete delivery of mutant EREG to the apical cell surface. Within 3 days of induction, ectopic lumens were detected in mutant, but not wild-type, EREG-expressing cysts. Of note, these structures resembled histological features found in subcutaneous xenografts of mutant EREG-expressing MDCK cells. These ectopic lumens formed de novo rather than budding from the central lumen and depended on metalloprotease-mediated cleavage of EREG and subsequent EGFR activity. Moreover, the most frequent EREG mutation in human cancer (R147stop) resulted in its apical mistrafficking in engineered MDCK cells. Thus, induction of EREG apical mistrafficking is sufficient to disrupt selective aspects of polarity of a preformed polarized epithelium. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Receptores ErbB , Transducción de Señal , Epirregulina/genética , Epirregulina/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , Fosforilación
9.
mBio ; 12(2)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653893

RESUMEN

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Asunto(s)
Membrana Externa Bacteriana/inmunología , Vesículas Extracelulares/inmunología , Fusobacterium nucleatum/inmunología , Fusobacterium nucleatum/metabolismo , Inflamación/microbiología , Animales , Células Cultivadas , Colon/citología , Medios de Cultivo/farmacología , Citocinas/análisis , Citocinas/inmunología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Femenino , Fusobacterium nucleatum/patogenicidad , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamación/inmunología , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/inmunología , Transducción de Señal , Receptor Toll-Like 4/inmunología
10.
Kidney360 ; 2(12): 1892-1907, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35342885

RESUMEN

Background: The root of many kidney diseases in humans can be traced to alterations or damage to subcellular organelles. Mitochondrial fragmentation, endoplasmic reticulum (ER) stress, and lysosomal inhibition, among others, ultimately contribute to kidney injury and are the target of therapeutics in development. Although recent technological advancements allow for the understanding of disease states at the cellular level, investigating changes in subcellular organelles from kidney tissue remains challenging. Methods: Using structured illumination microscopy, we imaged mitochondria and other organelles from paraffin sections of mouse tissue and human kidney biopsy specimens. The resulting images were 3D rendered to quantify mitochondrial size, content, and morphology. Results were compared with those from transmission electron microscopy and segmentation. Results: Super-resolution imaging reveals kidney tubular epithelial cell mitochondria in rodent and human kidney tissue form large, interconnected networks under basal conditions, which are fragmented with injury. This approach can be expanded to other organelles and cellular structures including autophagosomes, ER, brush border, and cell morphology. We find that, during unilateral ischemia, mitochondrial fragmentation occurs in most tubule cells, and they remain fragmented for >96 hours. Promoting mitochondrial fusion with the fusion promotor M1 preserves mitochondrial morphology and interconnectivity and protects against cisplatin-induced kidney injury. Conclusions: We provide, for the first time, a nonbiased, semiautomated approach for quantification of the 3D morphology of mitochondria in kidney tissue. Maintaining mitochondrial interconnectivity and morphology protects against kidney injury. Super-resolution imaging has the potential to both drive discovery of novel pathobiologic mechanisms in kidney tissue and broaden the diagnoses that can be made on human biopsy specimens.


Asunto(s)
Lesión Renal Aguda , Lesión Renal Aguda/inducido químicamente , Animales , Cisplatino/efectos adversos , Ratones , Microscopía , Mitocondrias/patología , Dinámicas Mitocondriales
11.
Nat Commun ; 11(1): 2092, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350252

RESUMEN

Small extracellular vesicles called exosomes affect multiple autocrine and paracrine cellular phenotypes. Understanding the function of exosomes requires a variety of tools, including live imaging. Our previous live-cell reporter, pHluorin-CD63, allows dynamic subcellular monitoring of exosome secretion in migrating and spreading cells. However, dim fluorescence and the inability to make stably-expressing cell lines limit its use. We incorporated a stabilizing mutation in the pHluorin moiety, M153R, which now exhibits higher, stable expression in cells and superior monitoring of exosome secretion. Using this improved construct, we visualize secreted exosomes in 3D culture and in vivo and identify a role for exosomes in promoting leader-follower behavior in 2D and 3D migration. Incorporating an additional non-pH-sensitive red fluorescent tag allows visualization of the exosome lifecycle, including multivesicular body (MVB) trafficking, MVB fusion, exosome uptake and endosome acidification. This reporter will be a useful tool for understanding both autocrine and paracrine roles of exosomes.


Asunto(s)
Movimiento Celular , Exosomas/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular , Exosomas/ultraestructura , Espacio Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Tetraspanina 30/química , Tetraspanina 30/metabolismo , Factores de Tiempo
12.
Dev Cell ; 50(5): 545-556.e4, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31378589

RESUMEN

Transporting epithelial cells generate arrays of microvilli, known as a brush border, to enhance functional capacity. To understand brush border formation, we used live cell imaging to visualize apical remodeling early in this process. Strikingly, we found that individual microvilli exhibit persistent active motility, translocating across the cell surface at âˆ¼0.2 µm/min. Perturbation with inhibitors and photokinetic experiments revealed that microvillar motility is driven by actin assembly at the barbed ends of core bundles, which in turn is linked to robust treadmilling of these structures. Actin regulatory factors IRTKS and EPS8 localize to the barbed ends of motile microvilli, where they control the kinetics and nature of movement. As the apical surface of differentiating epithelial cells is crowded with nascent microvilli, persistent motility promotes collisions between protrusions and ultimately clustering and consolidation into higher-order arrays. Thus, microvillar motility represents a previously unrecognized driving force for apical surface remodeling and maturation during epithelial differentiation.


Asunto(s)
Actinas/metabolismo , Diferenciación Celular , Células Epiteliales/citología , Microvellosidades/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células CACO-2 , Cadherinas/metabolismo , Movimiento Celular , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Proteínas de Microfilamentos/metabolismo , Miosinas/metabolismo , Porcinos
13.
Nat Cell Biol ; 21(8): 933-939, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31358965

RESUMEN

Actomyosin networks, the cell's major force production machineries, remodel cellular membranes during myriad dynamic processes1,2 by assembling into various architectures with distinct force generation properties3,4. While linear and branched actomyosin architectures are well characterized in cell-culture and cell-free systems3, it is not known how actin and myosin networks form and function to remodel membranes in complex three-dimensional mammalian tissues. Here, we use four-dimensional spinning-disc confocal microscopy with image deconvolution to acquire macromolecular-scale detail of dynamic actomyosin networks in exocrine glands of live mice. We address how actin and myosin organize around large membrane-bound secretory vesicles and generate the forces required to complete exocytosis5-7. We find that actin and non-muscle myosin II (NMII) assemble into previously undescribed polyhedral-like lattices around the vesicle membrane. The NMII lattice comprises bipolar minifilaments8-10 as well as non-canonical three-legged configurations. Using photobleaching and pharmacological perturbations in vivo, we show that actomyosin contractility and actin polymerization together push on the underlying vesicle membrane to overcome the energy barrier and complete exocytosis7. Our imaging approach thus unveils a force-generating actomyosin lattice that regulates secretion in the exocrine organs of live animals.


Asunto(s)
Actomiosina/metabolismo , Exocitosis/fisiología , Contracción Muscular/fisiología , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/genética , Animales , Membrana Celular/metabolismo , Exocitosis/genética , Ratones Transgénicos , Microscopía Confocal/métodos , Miosinas/genética , Vesículas Secretoras/metabolismo
14.
Nanotoxicology ; 8(8): 856-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23992423

RESUMEN

Gold nanoparticles (GNPs) have gained considerable attention for application in science and industry. However, the untoward effects of such particles on female fertility remain unclear. The objectives of this study were to (1) examine the effects of 10-nm GNPs on progesterone and estradiol-17ß accumulation by rat ovaries ex vivo and (2) to identify the locus/loci whereby GNPs modulate steroidogenesis via multiple-reference gene quantitative real-time RT-PCR. Regression analyses indicated a positive relationship between both Star (p < 0.05, r(2) = 0.278) and Cyp11a1 (p < 0.001, r(2) = 0.366) expression and P4 accumulation upon exposure to 1.43 × 10(6) GNPs/mL. Additional analyses showed that E2 accumulation was positively associated with Hsd3b1 (p < 0.05, r(2) = 0.181) and Cyp17a1 (p < 0.01, r(2) = 0.301) expression upon exposure to 1.43 × 1(3) and 1.43 × 10(9) GNPs/mL, respectively. These results suggest a subtle treatment-dependent impact of low-dose GNPs on the relationship between progesterone or estradiol-17ß and specific steroidogenic target genes, independent of oxidative stress or inhibin.


Asunto(s)
Estradiol/metabolismo , Oro/administración & dosificación , Oro/farmacología , Nanopartículas del Metal/administración & dosificación , Ovario/efectos de los fármacos , Progesterona/metabolismo , Animales , Estradiol/análisis , Estradiol/genética , Femenino , Oro/química , Hormonas/administración & dosificación , Hormonas/química , Hormonas/farmacología , Inhibinas/análisis , Inhibinas/metabolismo , Modelos Lineales , Nanopartículas del Metal/química , Ovario/química , Progesterona/análisis , Progesterona/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA