Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
J Immunol ; 212(6): 1012-1021, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251913

RESUMEN

It is becoming clear that every organ is seeded by a population of fetal liver-derived macrophages that are replaced at different rates by monocyte-derived macrophages. Using the Ms4a3tdTomato reporter mouse that reports on monocyte-derived alveolar macrophages (Mo-AMs) and our ability to examine AM function using our multichannel intravital microscopy, we examined the fetal-liver derived alveolar macrophage (FL-AM) and Mo-AM populations within the same mouse under various environmental conditions. The experiments unveiled that AMs migrated from alveolus to alveolus and phagocytosed bacteria identically regardless of ontogenic origin. Using 50 PFU of influenza A virus (IAV) determined using the Madin-Darby canine kidney (MDCK) cell line, we noted that both populations were susceptible to IAV-induced immunoparalysis, which also led to impaired phagocytosis of secondary bacterial infections. Both FL-AMs and Mo-AMs were trained by ß-glucan to resist IAV-induced paralysis. Over time (40 wk), Mo-AMs began to outperform FL-AMs, although both populations were still sensitive to IAV. Our data also show that clodronate depletion of AMs leads to replenishment, but by FL-AMs, and these macrophages do show some functional impairment for a limited time. Overall, the system is designed such that new macrophages rapidly assume the function of tissue-resident macrophages when both populations are examined in an identical environment. These data do differ from artificial depletion methods that compare Mo-AMs and FL-AMs.


Asunto(s)
Coinfección , Virus de la Influenza A , Animales , Perros , Ratones , Pulmón , Macrófagos , Macrófagos Alveolares , Fagocitosis , Hígado
2.
J Allergy Clin Immunol ; 152(1): 230-243, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36822481

RESUMEN

BACKGROUND: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1ß secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF. Another hallmark of FMF is extraordinarily high expression of S100A8 and S100A9. These alarmins are ligands of Toll-like receptor 4 and amplifiers of inflammation. However, the relevance of this inflammatory pathway for the pathogenesis of FMF is unknown. OBJECTIVE: This study investigated whether mutations in pyrin result in specific secretion of S100A8/A9 alarmins through gasdermin D pores' amplifying FMF pathology. METHODS: S100A8/A9 levels in FMF patients were quantified by enzyme-linked immunosorbent assay. In vitro models with knockout cell lines and specific protein inhibitors were used to unravel the S100A8/A9 secretion mechanism. The impact of S100A8/A9 to the pathophysiology of FMF was analyzed with FMF (MEFVV726A/V726A) and S100A9-/- mouse models. Pyrin-S100A8/A9 interaction was investigated by coimmunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay studies. RESULTS: The S100A8/A9 complexes directly interacted with pyrin. Knocking out pyrin, caspase-1, or gasdermin D inhibited the secretion of these S100 alarmins. Inflammatory S100A8/A9 dimers were inactivated by tetramer formation. Blocking this inactivation by targeted S100A9 deletion in a murine FMF model demonstrated the relevance of this novel autoinflammatory pathway in FMF. CONCLUSION: This is the first proof that members of the S100 alarmin family are released in a pyrin/caspase-1/gasdermin D-dependent pathway and directly drive autoinflammation in vivo.


Asunto(s)
Síndromes Periódicos Asociados a Criopirina , Fiebre Mediterránea Familiar , Animales , Ratones , Alarminas , Calgranulina A/genética , Caspasas/metabolismo , Síndromes Periódicos Asociados a Criopirina/genética , Fiebre Mediterránea Familiar/genética , Gasderminas , Inflamación , Pirina/genética
3.
Trends Immunol ; 44(2): 129-145, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36623953

RESUMEN

There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.


Asunto(s)
Factor de Transcripción GATA6 , Macrófagos Peritoneales , Mamíferos , Animales , Factor de Transcripción GATA6/inmunología , Macrófagos Peritoneales/inmunología , Mamíferos/inmunología , Fagocitos/inmunología , Erizos de Mar/inmunología
4.
Clin Transl Med ; 12(11): e1121, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36424766

Asunto(s)
Macrófagos , Monocitos
5.
Bio Protoc ; 12(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36199704

RESUMEN

Abdominal surgeries are frequently associated with the development of post-surgical adhesions. These are irreversible fibrotic scar bands that appear between abdominal organs and the abdominal wall. Patients suffering from adhesions are at risk of severe complications, such as small bowel obstruction, chronic pelvic pain, or infertility. To date, no cure exists, and the understanding of underlying molecular mechanisms of adhesion formation is incomplete. The current paradigm largely relies on sterile injury mouse models. However, abdominal surgeries in human patients are rarely completely sterile procedures. Here, we describe a modular surgical procedure for simultaneous or separate induction of sterile injury and microbial contamination. Combined, these insults synergistically lead to adhesion formation in the mouse peritoneal cavity. Surgical trauma is confined to a localized sterile injury of the peritoneum. Microbial contamination of the peritoneal cavity is induced by a limited perforation of the microbe-rich large intestine or by injection of fecal content. The presented protocol extends previous injury-based adhesion models by an additional insult through microbial contamination, which may more adequately model the clinical context of abdominal surgery. Graphical abstract.

6.
Nature ; 609(7925): 166-173, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948634

RESUMEN

During infection, inflammatory monocytes are thought to be key for bacterial eradication, but this is hard to reconcile with the large numbers of neutrophils that are recruited for each monocyte that migrates to the afflicted tissue, and the much more robust microbicidal functions of the neutrophils. However, unlike neutrophils, monocytes have the capacity to convert to situationally specific macrophages that may have critical functions beyond infection control1,2. Here, using a foreign body coated with Staphylococcus aureus and imaging over time from cutaneous infection to wound resolution, we show that monocytes and neutrophils are recruited in similar numbers with low-dose infection but not with high-dose infection, and form a localization pattern in which monocytes surround the infection site, whereas neutrophils infiltrate it. Monocytes did not contribute to bacterial clearance but converted to macrophages that persisted for weeks after infection, regulating hypodermal adipocyte expansion and production of the adipokine hormone leptin. In infected monocyte-deficient mice there was increased persistent hypodermis thickening and an elevated leptin level, which drove overgrowth of dysfunctional blood vasculature and delayed healing, with a thickened scar. Ghrelin, which opposes leptin function3, was produced locally by monocytes, and reduced vascular overgrowth and improved healing post-infection. In sum, we find that monocytes function as a cellular rheostat by regulating leptin levels and revascularization during wound repair.


Asunto(s)
Leptina , Monocitos , Neovascularización Fisiológica , Infecciones Estafilocócicas , Staphylococcus aureus , Cicatrización de Heridas , Adipocitos/citología , Adipocitos/metabolismo , Animales , Cicatriz , Ghrelina/metabolismo , Leptina/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Monocitos/citología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/inmunología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Staphylococcus aureus/fisiología
7.
Nat Commun ; 13(1): 4406, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906202

RESUMEN

Emerging evidence suggests that resident macrophages within tissues are enablers of tumor growth. However, a second population of resident macrophages surrounds all visceral organs within the cavities and nothing is known about these GATA6+ large peritoneal macrophages (GLPMs) despite their ability to invade injured visceral organs by sensing danger signals. Here, we show that GLPMs invade growing metastases that breach the visceral mesothelium of the liver via the "find me signal", ATP. Depleting GLPMs either by pharmacological or genetic tools, reduces metastases growth. Apoptotic bodies from tumor cells induces programmed cell death ligand 1 (PD-L1) upregulation on GLPMs which block CD8+ T cell function. Direct targeting of GLPMs by intraperitoneal but not intravenous administration of anti-PD-L1 reduces tumor growth. Thermal ablation of liver metastases recruits huge numbers of GLPMs and enables rapid regrowth of tumors. GLPMs contribute to metastatic growth and tumor recurrence.


Asunto(s)
Neoplasias Hepáticas , Macrófagos Peritoneales , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factor de Transcripción GATA6/genética , Humanos , Macrófagos/metabolismo , Macrófagos Peritoneales/metabolismo , Recurrencia Local de Neoplasia
8.
J Hepatol ; 77(4): 1136-1160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750137

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Carcinoma Hepatocelular/patología , Comunicación Celular , Fibrosis , Humanos , Inflamación/patología , Lípidos , Hígado/patología , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , ARN , Receptores Citoplasmáticos y Nucleares
9.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35522219

RESUMEN

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Inmunidad Innata , Inflamación , Neoplasias/genética , Fenotipo
10.
Blood ; 139(19): 2851-2853, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35552646
11.
Cancer Immunol Res ; 10(1): 12-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785505

RESUMEN

Patients with colorectal cancer frequently develop liver metastases after, and perhaps as a consequence of, lifesaving surgical resection of the primary tumor. This creates a potential opportunity for prophylactic metastatic treatment with novel immunostimulatory molecules. Here, we used state-of-the-art intravital imaging of an experimental liver metastasis model to visualize the early behavior and function of invariant natural killer T (iNKT) cells stimulated with α-galactosylceramide (α-GalCer). Intravenous α-GalCer prior to tumor cell seeding in the liver significantly inhibited tumor growth. However, some seeding tumor cells survived. A multiple dosing regimen reduced tumor burden and prolonged the life of mice, whereas tumors returned within 5 days after a single dose of α-GalCer. With multiple doses of α-GalCer, iNKT cells increased in number and granularity (as did NK cells). As a result, the total number of contacts and time in contact with tumors increased substantially. In the absence of iNKT cells, the beneficial effect of α-GalCer was lost. Robust cytokine production dissipated over time. Repeated therapy, even after cytokine dissipation, led to reduced tumor burden and prolonged survival. Serial transplantation of tumors exposed to α-GalCer-activated iNKT cells did not induce greater resistance, suggesting no obvious epigenetic or genetic immunoediting in tumors exposed to activated iNKT cells. Very few tumor cells expressed CD1d in this model, and as such, adding monomers of CD1d-α-GalCer further reduced tumor growth. The data suggest early and repeated stimulation of iNKT cells with α-GalCer could have direct therapeutic benefit for patients with colorectal cancer who develop metastatic liver disease.


Asunto(s)
Antígenos CD1d/inmunología , Galactosilceramidas/inmunología , Neoplasias Hepáticas/secundario , Células T Asesinas Naturales/inmunología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/citología , Metástasis de la Neoplasia
12.
Nat Commun ; 12(1): 7316, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34916513

RESUMEN

Abdominal surgeries are lifesaving procedures but can be complicated by the formation of peritoneal adhesions, intra-abdominal scars that cause intestinal obstruction, pain, infertility, and significant health costs. Despite this burden, the mechanisms underlying adhesion formation remain unclear and no cure exists. Here, we show that contamination of gut microbes increases post-surgical adhesion formation. Using genetic lineage tracing we show that adhesion myofibroblasts arise from the mesothelium. This transformation is driven by epidermal growth factor receptor (EGFR) signaling. The EGFR ligands amphiregulin and heparin-binding epidermal growth factor, are sufficient to induce these changes. Correspondingly, EGFR inhibition leads to a significant reduction of adhesion formation in mice. Adhesions isolated from human patients are enriched in EGFR positive cells of mesothelial origin and human mesothelium shows an increase of mesothelial EGFR expression during bacterial peritonitis. In conclusion, bacterial contamination drives adhesion formation through mesothelial EGFR signaling. This mechanism may represent a therapeutic target for the prevention of adhesions after intra-abdominal surgery.


Asunto(s)
Epitelio/patología , Receptores ErbB/metabolismo , Adherencias Tisulares/metabolismo , Animales , Modelos Animales de Enfermedad , Receptores ErbB/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Miofibroblastos , Peritoneo , Peritonitis/patología , Adherencias Tisulares/genética , Adherencias Tisulares/patología
13.
Neurocrit Care ; 35(3): 617-630, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34061312

RESUMEN

BACKGROUND: Neurological injury can alter the systemic immune system, modifying the functional capacity of immune cells and causing a dysfunctional balance of cytokines, although mechanisms remain incompletely understood. The objective of this study was to assess the temporal relationship between changes in the activation status of circulating invariant natural killer T (iNKT) cells and the balance of plasma cytokines among critically ill patients with neurological injury. METHODS: We conducted an exploratory prospective observational study of adult (18 years or older) intensive care unit (ICU) patients with acute neurological injury (n = 20) compared with ICU patients without neurological injury (n = 22) and healthy controls (n = 10). Blood samples were collected on days 1, 2, 4, 7, 14, and 28 following ICU admission to analyze the activation status of circulating iNKT cells by flow cytometry and the plasma concentration of inflammation-relevant immune mediators, including T helper 1 (TH1) and T helper 2 (TH2) cytokines, by multiplex bead-based assay. RESULTS: Invariant natural killer T cells were activated in both ICU patient groups compared with healthy controls. Neurological patients had decreased levels of multiple immune mediators, including TH1 cytokines (interferon-γ, tumor necrosis factor-α, and interleukin-12p70), indicative of immunosuppression. This led to a greater than twofold increase in the ratio of TH2/TH1 cytokines early after injury (days 1 - 2) compared with healthy controls, a shift that was also observed for ICU controls. Systemic TH2/TH1 cytokine ratios were positively associated with iNKT cell activation in the neurological patients and negatively associated in ICU controls. These relationships were strongest for the CD4+ iNKT cell subset compared with the CD4- iNKT cell subset. The relationships to individual cytokines similarly differed between patient groups. Forty percent of the neurological patients developed an infection; however, differences for the infection subgroup were not identified. CONCLUSIONS: Critically ill patients with neurological injury demonstrated altered systemic immune profiles early after injury, with an association between activated peripheral iNKT cells and elevated systemic TH2/TH1 cytokine ratios. This work provides further support for a brain-immune axis and the ability of neurological injury to have far-reaching effects on the body's immune system.


Asunto(s)
Células T Asesinas Naturales , Enfermedad Crítica , Citocinas , Citometría de Flujo , Humanos , Interferón gamma
14.
Cell Rep ; 34(13): 108919, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789099

RESUMEN

Neutrophils with immunoregulatory properties, also referred to as type-2 neutrophils (N2), myeloid-derived suppressor cells (MDSCs), or tumor-associated neutrophils (TANs), comprise a heterogeneous subset of cells that arise from unknown precursors in response to poorly understood cues. Here, we find that, in several models of liver autoimmunity, pharmacologically induced, autoantigen-specific T regulatory type-1 (TR1) cells and TR1-cell-induced B regulatory (Breg) cells use five immunoregulatory cytokines to coordinately recruit neutrophils into the liver and program their transcriptome to generate regulatory neutrophils. The liver-associated neutrophils from the treated mice, unlike their circulating counterparts or the liver neutrophils of sick mice lacking antigen-specific TR1 cells, are proliferative, can transfer disease protection to immunocompromised hosts engrafted with pathogenic effectors, and blunt antigen-presentation and local autoimmune responses via cathelin-related anti-microbial peptide (CRAMP), a cathelicidin, in a CRAMP-receptor-dependent manner. These results, thus, identify antigen-specific regulatory T cells as drivers of tissue-restricted regulatory neutrophil formation and CRAMP as an effector of regulatory neutrophil-mediated immunoregulation.


Asunto(s)
Autoinmunidad , Catelicidinas/metabolismo , Hígado/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos/metabolismo , Linfocitos B Reguladores/inmunología , Polaridad Celular/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Inflamación/patología , Macrófagos del Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mitosis/genética , Células Supresoras de Origen Mieloide/inmunología , Infiltración Neutrófila , Neutrófilos , Especificidad de Órganos , Fenotipo , Transcripción Genética
15.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397815

RESUMEN

Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.


Asunto(s)
Inflamación/sangre , Riñón/metabolismo , Neutrófilos/efectos de la radiación , Piel/efectos de la radiación , Animales , Calgranulina B/genética , Movimiento Celular/efectos de la radiación , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Inflamación/etiología , Inflamación/patología , Interleucina-17/genética , Riñón/lesiones , Riñón/patología , Riñón/efectos de la radiación , Lipocalina 2/genética , Ratones , Neutrófilos/metabolismo , Neutrófilos/patología , Piel/lesiones , Rayos Ultravioleta/efectos adversos , Molécula 1 de Adhesión Celular Vascular/genética
16.
Hepatology ; 74(1): 296-311, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33219516

RESUMEN

BACKGROUND AND AIMS: Bacterial infections are common and severe in cirrhosis, but their pathogenesis is poorly understood. Dysfunction of liver macrophages may play a role, but information about their function in cirrhosis is limited. Our aims were to investigate the specific profile and function of liver macrophages in cirrhosis and their contribution to infections. Macrophages from human cirrhotic livers were characterized phenotypically by transcriptome analysis and flow cytometry; function was assessed in vivo by single photon emission computerized tomography in patients with cirrhosis. Serum levels of specific proteins and expression in peripheral monocytes were determined by ELISA and flow cytometry. In vivo phagocytic activity of liver macrophages was measured by spinning disk intravital microscopy in a mouse model of chronic liver injury. APPROACH AND RESULTS: Liver macrophages from patients with cirrhosis overexpressed proteins related to immune exhaustion, such as programmed death ligand 1 (PD-L1), macrophage receptor with collagenous structure (MARCO), and CD163. In vivo phagocytic activity of liver macrophages in patients with cirrhosis was markedly impaired. Monocytes from patients with cirrhosis showed overexpression of PD-L1 that paralleled disease severity, correlated with its serum levels, and was associated with increased risk of infections. Blockade of PD-L1 with anti-PD-L1 antibody caused a shift in macrophage phenotype toward a less immunosuppressive profile, restored liver macrophage in vivo phagocytic activity, and reduced bacterial dissemination. CONCLUSION: Liver cirrhosis is characterized by a remarkable impairment of phagocytic function of macrophages associated with an immunosuppressive transcriptome profile. The programmed cell death receptor 1/PD-L1 axis plays a major role in the impaired activity of liver macrophages. PD-L1 blockade reverses the immune suppressive profile and increases antimicrobial activity of liver macrophages in cirrhosis.


Asunto(s)
Antígeno B7-H1/metabolismo , Infecciones Bacterianas/inmunología , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Cirrosis Hepática/inmunología , Macrófagos/inmunología , Anciano , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Infecciones Bacterianas/prevención & control , Biopsia , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Hígado/inmunología , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Fagocitosis , Cultivo Primario de Células , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Índice de Severidad de la Enfermedad
17.
Cell ; 183(1): 110-125.e11, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888431

RESUMEN

During respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened. However, this would translate to omnipresent persistent inflammation. Developing in vivo real-time intravital imaging of alveoli revealed AMs crawling in and between alveoli using the pores of Kohn. Importantly, these macrophages sensed, chemotaxed, and, with high efficiency, phagocytosed inhaled bacterial pathogens such as P. aeruginosa and S. aureus, cloaking the bacteria from neutrophils. Impairing AM chemotaxis toward bacteria induced superfluous neutrophil recruitment, leading to inappropriate inflammation and injury. In a disease context, influenza A virus infection impaired AM crawling via the type II interferon signaling pathway, and this greatly increased secondary bacterial co-infection.


Asunto(s)
Bacterias/inmunología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Animales , Femenino , Homeostasis , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infiltración Neutrófila , Neutrófilos/inmunología , Fagocitosis/inmunología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/patogenicidad , Alveolos Pulmonares , Transducción de Señal , Staphylococcus aureus/inmunología , Staphylococcus aureus/patogenicidad
18.
Biomaterials ; 252: 120105, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32417652

RESUMEN

Despite extensive molecular characterization, human glioblastoma remains a fatal disease with survival rates measured in months. Little improvement is seen with standard surgery, radiotherapy and chemotherapy. Clinical progress is hampered by the inability to detect and target glioblastoma disease reservoirs based on a diffuse invasive pattern and the presence of molecular and phenotypic heterogeneity. The goal of this study was to target the invasive and stem-like glioblastoma cells that evade first-line treatments using agents capable of delivering imaging enhancers or biotherapeutic cargo. To accomplish this, a combinatorial phage display library was biopanned against glioblastoma cell model systems that accurately recapitulate the intra- and inter-tumor heterogeneity and infiltrative nature of the disease. Candidate peptides were screened for specificity and ability to target glioblastoma cells in vivo. Cargo-conjugated peptides delivered contrast-enhancing agents to highly infiltrative tumor populations in intracranial xenograft models without the obvious need for blood brain barrier disruption. Simultaneous use of five independent targeting peptides provided greater coverage of this complex tumor and selected peptides have the capacity to deliver a therapeutic cargo (oncolytic virus VSVΔM51) to the tumor cells in vivo. Herein, we have identified a series of peptides with utility as an innovative platform to assist in targeting glioblastoma for the purpose of diagnostic or prognostic imaging, image-guided surgery, and/or improved delivery of therapeutic agents to glioblastoma cells implicated in disease relapse.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Virus Oncolíticos , Animales , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Humanos , Péptidos
19.
Cell Host Microbe ; 27(5): 752-768.e7, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32298657

RESUMEN

The impact of T helper (Th) 1 versus Th2 immunity on intracellular infections is attributed to classical versus alternative activation of macrophages leading to resistance or susceptibility. However, observations in multiple infectious settings demonstrate deficiencies in mediators of Th1-Th2 immunity, which have paradoxical or no impact. We report that prior to influencing activation, Th1/Th2 immunity first controls the size of the permissive host cell reservoir. During early Leishmania infection of the skin, IFN-γ- or STAT6-mediated changes in phagocyte activation were counteracted by changes in IFN-γ-mediated recruitment of permissive CCR2+ monocytes. Monocytes were required for early parasite expansion and acquired an alternatively activated phenotype despite the Th1 dermal environment required for their recruitment. Surprisingly, STAT6 did not enhance intracellular parasite proliferation, but rather modulated the size and permissiveness of the monocytic host cell reservoir via regulation of IFN-γ and IL-10. These observations expand our understanding of the Th1-Th2 paradigm during infection.


Asunto(s)
Leishmaniasis/inmunología , Monocitos/inmunología , Piel/inmunología , Células TH1/inmunología , Células Th2/inmunología , Animales , Femenino , Interferón gamma/deficiencia , Interferón gamma/genética , Interleucina-10/deficiencia , Interleucina-10/genética , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL/genética , Ratones Noqueados , Tolerancia , Psychodidae , Receptores CCR2/deficiencia , Receptores CCR2/genética , Factor de Transcripción STAT6/deficiencia , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Replicación Viral
20.
Nat Commun ; 11(1): 1329, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165624

RESUMEN

While the ontogeny and recruitment of the intestinal monocyte/macrophage lineage has been studied extensively, their precise localization and function has been overlooked. Here we show by imaging the murine small and large intestines in steady-state that intestinal CX3CR1+ macrophages form an interdigitated network intimately adherent to the entire mucosal lamina propria vasculature. The macrophages form contacts with each other, which are disrupted in the absence of microbiome, monocyte recruitment (Ccr2-/-), or monocyte conversion (Nr4a1-/-). In dysbiosis, gaps exist between the perivascular macrophages correlating with increased bacterial translocation from the lamina propria into the bloodstream. The recruitment of monocytes and conversion to macrophages during intestinal injury is also dependent upon CCR2, Nr4a1 and the microbiome. These findings demonstrate a relationship between microbiome and the maturation of lamina propria perivascular macrophages into a tight anatomical barrier that might function to prevent bacterial translocation. These cells are also critical for emergency vascular repair.


Asunto(s)
Microbioma Gastrointestinal , Mucosa Intestinal/irrigación sanguínea , Mucosa Intestinal/citología , Macrófagos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Colitis/patología , Sulfato de Dextran , Disbiosis/patología , Ratones Endogámicos C57BL , Monocitos/metabolismo , Receptores CCR2/metabolismo , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA