Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Leukemia ; 38(7): 1501-1510, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38467769

RESUMEN

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.


Asunto(s)
Evolución Clonal , Metilación de ADN , Leucemia Mieloide Aguda , Mutación , Nucleofosmina , Fenotipo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pronóstico , Evolución Clonal/genética , Masculino , Heterogeneidad Genética , Femenino , Persona de Mediana Edad , Adulto , Anciano
2.
Res Sq ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986825

RESUMEN

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogenous phenotypes.

3.
Cell Genom ; 3(9): 100380, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37719146

RESUMEN

Cell lineages accumulate somatic mutations during organismal development, potentially leading to pathological states. The rate of somatic evolution within a cell population can vary due to multiple factors, including selection, a change in the mutation rate, or differences in the microenvironment. Here, we developed a statistical test called the Poisson Tree (PT) test to detect varying evolutionary rates among cell lineages, leveraging the phylogenetic signal of single-cell DNA sequencing (scDNA-seq) data. We applied the PT test to 24 healthy and cancer samples, rejecting a constant evolutionary rate in 11 out of 15 cancer and five out of nine healthy scDNA-seq datasets. In six cancer datasets, we identified subclonal mutations in known driver genes that could explain the rate accelerations of particular cancer lineages. Our findings demonstrate the efficacy of scDNA-seq for studying somatic evolution and suggest that cell lineages often evolve at different rates within cancer and healthy tissues.

4.
Nat Commun ; 14(1): 4921, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582954

RESUMEN

Reconstructing the history of somatic DNA alterations can help understand the evolution of a tumor and predict its resistance to treatment. Single-cell DNA sequencing (scDNAseq) can be used to investigate clonal heterogeneity and to inform phylogeny reconstruction. However, most existing phylogenetic methods for scDNAseq data are designed either for single nucleotide variants (SNVs) or for large copy number alterations (CNAs), or are not applicable to targeted sequencing. Here, we develop COMPASS, a computational method for inferring the joint phylogeny of SNVs and CNAs from targeted scDNAseq data. We evaluate COMPASS on simulated data and apply it to several datasets including a cohort of 123 patients with acute myeloid leukemia. COMPASS detected clonal CNAs that could be orthogonally validated with bulk data, in addition to subclonal ones that require single-cell resolution, some of which point toward convergent evolution.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Filogenia , Variaciones en el Número de Copia de ADN/genética , Algoritmos , Mutación , Neoplasias/genética , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento
5.
Nat Commun ; 14(1): 3676, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344522

RESUMEN

Cancer progression is an evolutionary process shaped by both deterministic and stochastic forces. Multi-region and single-cell sequencing of tumors enable high-resolution reconstruction of the mutational history of each tumor and highlight the extensive diversity across tumors and patients. Resolving the interactions among mutations and recovering recurrent evolutionary processes may offer greater opportunities for successful therapeutic strategies. To this end, we present a novel probabilistic framework, called TreeMHN, for the joint inference of exclusivity patterns and recurrent trajectories from a cohort of intra-tumor phylogenetic trees. Through simulations, we show that TreeMHN outperforms existing alternatives that can only focus on one aspect of the task. By analyzing datasets of blood, lung, and breast cancers, we find the most likely evolutionary trajectories and mutational patterns, consistent with and enriching our current understanding of tumorigenesis. Moreover, TreeMHN facilitates the prediction of tumor evolution and provides probabilistic measures on the next mutational events given a tumor tree, a prerequisite for evolution-guided treatment strategies.


Asunto(s)
Neoplasias , Humanos , Filogenia , Neoplasias/genética , Neoplasias/patología , Mutación , Análisis de Secuencia
6.
Genome Biol ; 23(1): 248, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451239

RESUMEN

We present SIEVE, a statistical method for the joint inference of somatic variants and cell phylogeny under the finite-sites assumption from single-cell DNA sequencing. SIEVE leverages raw read counts for all nucleotides and corrects the acquisition bias of branch lengths. In our simulations, SIEVE outperforms other methods in phylogenetic reconstruction and variant calling accuracy, especially in the inference of homozygous variants. Applying SIEVE to three datasets, one for triple-negative breast (TNBC), and two for colorectal cancer (CRC), we find that double mutant genotypes are rare in CRC but unexpectedly frequent in the TNBC samples.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Filogenia , Secuencia de Bases , Análisis de Secuencia de ADN , ADN , Nucleótidos
7.
PLoS Comput Biol ; 18(9): e1009767, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067230

RESUMEN

Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Teorema de Bayes , Carcinoma Hepatocelular/genética , Análisis por Conglomerados , Humanos , Neoplasias Hepáticas/genética , Proteoma , Transcriptoma
8.
Bioinformatics ; 38(20): 4713-4719, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000873

RESUMEN

MOTIVATION: Tumours evolve as heterogeneous populations of cells, which may be distinguished by different genomic aberrations. The resulting intra-tumour heterogeneity plays an important role in cancer patient relapse and treatment failure, so that obtaining a clear understanding of each patient's tumour composition and evolutionary history is key for personalized therapies. Single-cell sequencing (SCS) now provides the possibility to resolve tumour heterogeneity at the highest resolution of individual tumour cells, but brings with it challenges related to the particular noise profiles of the sequencing protocols as well as the complexity of the underlying evolutionary process. RESULTS: By modelling the noise processes and allowing mutations to be lost or to reoccur during tumour evolution, we present a method to jointly call mutations in each cell, reconstruct the phylogenetic relationship between cells, and determine the locations of mutational losses and recurrences. Our Bayesian approach allows us to accurately call mutations as well as to quantify our certainty in such predictions. We show the advantages of allowing mutational loss or recurrence with simulated data and present its application to tumour SCS data. AVAILABILITY AND IMPLEMENTATION: SCIΦN is available at https://github.com/cbg-ethz/SCIPhIN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Neoplasias , Teorema de Bayes , Humanos , Mutación , Neoplasias/genética , Filogenia , Programas Informáticos
9.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35679575

RESUMEN

Dynamic Bayesian networks (DBNs) can be used for the discovery of gene regulatory networks (GRNs) from time series gene expression data. Here, we suggest a strategy for learning DBNs from gene expression data by employing a Bayesian approach that is scalable to large networks and is targeted at learning models with high predictive accuracy. Our framework can be used to learn DBNs for multiple groups of samples and highlight differences and similarities in their GRNs. We learn these DBN models based on different structural and parametric assumptions and select the optimal model based on the cross-validated predictive accuracy. We show in simulation studies that our approach is better equipped to prevent overfitting than techniques used in previous studies. We applied the proposed DBN-based approach to two time series transcriptomic datasets from the Gene Expression Omnibus database, each comprising data from distinct phenotypic groups of the same tissue type. In the first case, we used DBNs to characterize responders and non-responders to anti-cancer therapy. In the second case, we compared normal to tumor cells of colorectal tissue. The classification accuracy reached by the DBN-based classifier for both datasets was higher than reported previously. For the colorectal cancer dataset, our analysis suggested that GRNs for cancer and normal tissues have a lot of differences, which are most pronounced in the neighborhoods of oncogenes and known cancer tissue markers. The identified differences in gene networks of cancer and normal cells may be used for the discovery of targeted therapies.


Asunto(s)
Biología Computacional , Redes Reguladoras de Genes , Algoritmos , Teorema de Bayes , Biología Computacional/métodos , Simulación por Computador
10.
PLoS Comput Biol ; 18(6): e1010097, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658001

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technique to decipher tissue composition at the single-cell level and to inform on disease mechanisms, tumor heterogeneity, and the state of the immune microenvironment. Although multiple methods for the computational analysis of scRNA-seq data exist, their application in a clinical setting demands standardized and reproducible workflows, targeted to extract, condense, and display the clinically relevant information. To this end, we designed scAmpi (Single Cell Analysis mRNA pipeline), a workflow that facilitates scRNA-seq analysis from raw read processing to informing on sample composition, clinically relevant gene and pathway alterations, and in silico identification of personalized candidate drug treatments. We demonstrate the value of this workflow for clinical decision making in a molecular tumor board as part of a clinical study.


Asunto(s)
Análisis de la Célula Individual , Programas Informáticos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del Exoma , Flujo de Trabajo
11.
PLoS Comput Biol ; 17(12): e1009036, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910733

RESUMEN

Tumour progression is an evolutionary process in which different clones evolve over time, leading to intra-tumour heterogeneity. Interactions between clones can affect tumour evolution and hence disease progression and treatment outcome. Intra-tumoural pairs of mutations that are overrepresented in a co-occurring or clonally exclusive fashion over a cohort of patient samples may be suggestive of a synergistic effect between the different clones carrying these mutations. We therefore developed a novel statistical testing framework, called GeneAccord, to identify such gene pairs that are altered in distinct subclones of the same tumour. We analysed our framework for calibration and power. By comparing its performance to baseline methods, we demonstrate that to control type I errors, it is essential to account for the evolutionary dependencies among clones. In applying GeneAccord to the single-cell sequencing of a cohort of 123 acute myeloid leukaemia patients, we find 1 clonally co-occurring and 8 clonally exclusive gene pairs. The clonally exclusive pairs mostly involve genes of the key signalling pathways.


Asunto(s)
Biología Computacional/métodos , Leucemia Mieloide Aguda , Algoritmos , Progresión de la Enfermedad , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Modelos Estadísticos , Mutación/genética , Transducción de Señal/genética
12.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946379

RESUMEN

Intra-tumour heterogeneity is the molecular hallmark of renal cancer, and the molecular tumour composition determines the treatment outcome of renal cancer patients. In renal cancer tumourigenesis, in general, different tumour clones evolve over time. We analysed intra-tumour heterogeneity and subclonal mutation patterns in 178 tumour samples obtained from 89 clear cell renal cell carcinoma patients. In an initial discovery phase, whole-exome and transcriptome sequencing data from paired tumour biopsies from 16 ccRCC patients were used to design a gene panel for follow-up analysis. In this second phase, 826 selected genes were targeted at deep coverage in an extended cohort of 89 patients for a detailed analysis of tumour heterogeneity. On average, we found 22 mutations per patient. Pairwise comparison of the two biopsies from the same tumour revealed that on average, 62% of the mutations in a patient were detected in one of the two samples. In addition to commonly mutated genes (VHL, PBRM1, SETD2 and BAP1), frequent subclonal mutations with low variant allele frequency (<10%) were observed in TP53 and in mucin coding genes MUC6, MUC16, and MUC3A. Of the 89 ccRCC tumours, 87 (~98%) harboured private mutations, occurring in only one of the paired tumour samples. Clonally exclusive pathway pairs were identified using the WES data set from 16 ccRCC patients. Our findings imply that shared and private mutations significantly contribute to the complexity of differential gene expression and pathway interaction and might explain the clonal evolution of different molecular renal cancer subgroups. Multi-regional sequencing is central for the identification of subclones within ccRCC.

14.
Cancer Cell ; 39(3): 288-293, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33482122

RESUMEN

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.


Asunto(s)
Neoplasias/genética , Neoplasias/metabolismo , Toma de Decisiones Clínicas/métodos , Biología Computacional/métodos , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Medicina de Precisión/métodos , Estudios Prospectivos
15.
Eur Urol Focus ; 7(1): 152-162, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266731

RESUMEN

BACKGROUND: Extensive DNA sequencing has led to an unprecedented view of the diversity of individual genomes and their evolution among patients with clear cell renal cell carcinoma (ccRCC). OBJECTIVE: To understand subclonal architecture and dynamics of patient-derived two-dimensional (2D) and three-dimensional (3D) ccRCC models in vitro, in order to determine whether they mirror ccRCC inter- and intratumor heterogeneity. DESIGN, SETTING, AND PARTICIPANTS: We have established a comprehensive platform of living renal cancer cell models from ccRCC surgical specimens. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We confirmed the concordance of 2D and 3D patient-derived cell (PDC) models with the original tumor tissue in terms of histology, biomarker expression, cancer driver mutations, and copy number alterations. We addressed inter- and intrapatient heterogeneity by analyzing clonal dynamics during serial passaging. RESULTS AND LIMITATIONS: In-depth genetic characterization verified the presence of heterogeneous cell populations, and revealed a high degree of similarity between subclonal compositions of monolayer and organoid cell cultures and the corresponding parental ccRCCs. Clonal dynamics were evident during serial passaging of cells in vitro, suggesting that PDC cultures can offer insights into evolutionary potential and treatment susceptibility of ccRCC subclones in vivo. Proof-of-concept drug profiling using selected ccRCC-targeted therapy agents highlighted patient-specific vulnerabilities in PDC models that could not be anticipated by interrogating commercially available cell lines. CONCLUSIONS: We demonstrate that PDC models mirror inter- and intratumor heterogeneity of ccRCC in vitro. Based on our findings, we envision that the use of these models will advance our understanding of the trajectories that cause genetic diversity and their consequences for treatment on an individual level. PATIENT SUMMARY: In this study, we developed two- and three-dimensional patient-derived models from clear cell renal cell carcinoma (ccRCC) as "mini-tumors in a dish." We show that these cell models retain important features of the human ccRCCs such as the profound tumor heterogeneity, thus highlighting their importance for cancer research and precision medicine.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores de Tumor , Carcinoma de Células Renales/genética , Evolución Molecular , Heterogeneidad Genética , Humanos , Neoplasias Renales/genética , Medicina de Precisión
17.
Nat Commun ; 11(1): 5327, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087716

RESUMEN

Clonal diversity is a consequence of cancer cell evolution driven by Darwinian selection. Precise characterization of clonal architecture is essential to understand the evolutionary history of tumor development and its association with treatment resistance. Here, using a single-cell DNA sequencing, we report the clonal architecture and mutational histories of 123 acute myeloid leukemia (AML) patients. The single-cell data reveals cell-level mutation co-occurrence and enables reconstruction of mutational histories characterized by linear and branching patterns of clonal evolution, with the latter including convergent evolution. Through xenotransplantion, we show leukemia initiating capabilities of individual subclones evolving in parallel. Also, by simultaneous single-cell DNA and cell surface protein analysis, we illustrate both genetic and phenotypic evolution in AML. Lastly, single-cell analysis of longitudinal samples reveals underlying evolutionary process of therapeutic resistance. Together, these data unravel clonal diversity and evolution patterns of AML, and highlight their clinical relevance in the era of precision medicine.


Asunto(s)
Evolución Clonal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Anciano , Animales , Evolución Clonal/efectos de los fármacos , Estudios de Cohortes , Femenino , Estudios de Asociación Genética , Genómica , Xenoinjertos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Modelos Genéticos , Mutación , Análisis de Secuencia de ADN , Análisis de la Célula Individual
18.
Cells ; 9(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532145

RESUMEN

Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence of foreign antigens. Through the GC lifespan, interclonal competition between B cells leads to increased affinity of the B cell receptors for antigens accompanied by a loss of clonal diversity, although the mechanisms underlying clonal dynamics are not completely understood. We present here a multi-scale quantitative model of the GC reaction that integrates an intracellular component, accounting for the genetic events that shape B cell differentiation, and an extracellular stochastic component, which accounts for the random cellular interactions within the GC. In addition, B cell receptors are represented as sequences of nucleotides that mature and diversify through somatic hypermutations. We exploit extensive experimental characterizations of the GC dynamics to parameterize our model, and visualize affinity maturation by means of evolutionary phylogenetic trees. Our explicit modeling of B cell maturation enables us to characterise the evolutionary processes and competition at the heart of the GC dynamics, and explains the emergence of clonal dominance as a result of initially small stochastic advantages in the affinity to antigen. Interestingly, a subset of the GC undergoes massive expansion of higher-affinity B cell variants (clonal bursts), leading to a loss of clonal diversity at a significantly faster rate than in GCs that do not exhibit clonal dominance. Our work contributes towards an in silico vaccine design, and has implications for the better understanding of the mechanisms underlying autoimmune disease and GC-derived lymphomas.


Asunto(s)
Centro Germinal/inmunología , Simulación por Computador , Humanos , Procesos Estocásticos
19.
PLoS Comput Biol ; 16(2): e1007552, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32023238

RESUMEN

Despite advances in the modeling and understanding of colorectal cancer development, the dynamics of the progression from benign adenomatous polyp to colorectal carcinoma are still not fully resolved. To take advantage of adenoma size and prevalence data in the National Endoscopic Database of the Clinical Outcomes Research Initiative (CORI) as well as colorectal cancer incidence and size data from the Surveillance Epidemiology and End Results (SEER) database, we construct a two-type branching process model with compartments representing adenoma and carcinoma cells. To perform parameter inference we present a new large-size approximation to the size distribution of the cancer compartment and validate our approach on simulated data. By fitting the model to the CORI and SEER data, we learn biologically relevant parameters, including the transition rate from adenoma to cancer. The inferred parameters allow us to predict the individualized risk of the presence of cancer cells for each screened patient. We provide a web application which allows the user to calculate these individual probabilities at https://ccrc-eth.shinyapps.io/CCRC/. For example, we find a 1 in 100 chance of cancer given the presence of an adenoma between 10 and 20mm size in an average risk patient at age 50. We show that our two-type branching process model recapitulates the early growth dynamics of colon adenomas and cancers and can recover epidemiological trends such as adenoma prevalence and cancer incidence while remaining mathematically and computationally tractable.


Asunto(s)
Adenoma/diagnóstico , Neoplasias Colorrectales/epidemiología , Modelos Biológicos , Adenoma/patología , Neoplasias Colorrectales/patología , Biología Computacional , Bases de Datos Factuales , Femenino , Humanos , Incidencia , Masculino , Modelos Estadísticos , Probabilidad , Reproducibilidad de los Resultados , Factores de Riesgo , Programa de VERF
20.
Recent Results Cancer Res ; 215: 347-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31605238

RESUMEN

Next-generation sequencing of DNA and RNA obtained from liquid biopsies of cancer patients may reveal important insights into disease progression and metastasis formation, and it holds the promise to enable new methods for noninvasive screening and clinical decision support. However, implementing liquid biopsy sequencing protocols is challenged by capturing circulating tumor cells or cell-free tumor DNA from blood samples, by amplifying genomic DNA and RNA in a reliable and unbiased manner, and by extracting biologically meaningful signals from the noisy sequencing data. In this chapter, we discuss computational methods for the analysis of DNA and RNA sequencing data obtained from liquid biopsies, addressing these challenges.


Asunto(s)
ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biopsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , ADN Tumoral Circulante/sangre , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA