Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(11): 5423-41, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25948582

RESUMEN

Histone modifications impact various processes. In examining histone acetyltranferase HAT3 of Leishmania donovani, we find elimination of HAT3 causes decreased cell viability due to defects in histone deposition, and aberrant cell cycle progression pattern. HAT3 associates with proliferating cell nuclear antigen (PCNA), helping load PCNA onto chromatin in proliferating cells. HAT3-nulls show heightened sensitivity to UV radiation. Following UV exposure, PCNA cycles off/on chromatin only in cells expressing HAT3. Inhibition of the ubiquitin-proteasome pathway prior to UV exposure allows accumulation of chromatin-bound PCNA, and reveals that HAT3-nulls are deficient in PCNA monoubiquitination as well as polyubiquitination. While poor monoubiquitination of PCNA may adversely affect translesion DNA synthesis-based repair processes, polyubiquitination deficiencies may result in continued retention of chromatin-bound PCNA, leading to genomic instability. On suppressing the proteasome pathway we also find that HAT3 mediates PCNA acetylation in response to UV. HAT3-mediated PCNA acetylation may serve as a flag for PCNA ubiquitination, thus aiding DNA repair. While PCNA acetylation has previously been linked to its degradation following UV exposure, this is the first report linking a HAT-mediated PCNA acetylation to PCNA monoubiquitination. These findings add a new dimension to our knowledge of the mechanisms regulating PCNA ubiquitination post-UV exposure in eukaryotes.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Leishmania donovani/enzimología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Protozoarias/metabolismo , Rayos Ultravioleta , Acetilación , Ciclo Celular , Núcleo Celular/enzimología , Cromatina/metabolismo , Histona Acetiltransferasas/química , Histona Acetiltransferasas/genética , Histonas/química , Histonas/metabolismo , Leishmania donovani/citología , Leishmania donovani/efectos de la radiación , Lisina/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Ubiquitinación
2.
Plant Physiol Biochem ; 53: 33-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22306354

RESUMEN

To investigate the effects of copper (Cu), rice plant (Oryza sativa. L. var. MSE-9) was treated with different Cu concentrations (0, 10, 50 and 100 µM) for 5 days in hydroponic condition. Gradual decrease in shoot and root growth was observed with the increase of Cu concentration and duration of treatment where maximum inhibition was recorded in root growth. Cu was readily absorbed by the plant though the maximum accumulation was found in root than shoot. Hydrogen peroxide (H(2)O(2)) production and lipid peroxidation were found increased with the elevated Cu concentration indicating excess Cu induced oxidative stress. Antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and glutathione reductase (GR) were effectively generated at the elevated concentrations of Cu though catalase (CAT) did not show significant variation with respect to control. Ascorbate (ASH), glutathione (GSH) and proline contents were also increased in all the Cu treated plants compared with the control. SOD isoenzyme was greatly affected by higher concentration of Cu and it was consistent with the changes of the activity assayed in solution. The present study confirmed that excess Cu inhibits growth, induced oxidative stress by inducing ROS formation while the stimulated antioxidative system appears adaptive response of rice plant against Cu induced oxidative stress. Moreover proline accumulation in Cu stress plant seems to provide additional defense against the oxidative stress.


Asunto(s)
Adaptación Fisiológica , Antioxidantes/metabolismo , Cobre/efectos adversos , Enzimas/metabolismo , Oryza/efectos de los fármacos , Estrés Oxidativo/fisiología , Oligoelementos/farmacología , Ácido Ascórbico/metabolismo , Cobre/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Isoenzimas , Peroxidación de Lípido/efectos de los fármacos , Oryza/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Prolina/metabolismo , Oligoelementos/metabolismo
3.
PLoS One ; 6(7): e23107, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21829589

RESUMEN

Events leading to origin firing and fork elongation in eukaryotes involve several proteins which are mostly conserved across the various eukaryotic species. Nuclear DNA replication in trypanosomatids has thus far remained a largely uninvestigated area. While several eukaryotic replication protein orthologs have been annotated, many are missing, suggesting that novel replication mechanisms may apply in this group of organisms. Here, we characterize the expression of Leishmania donovani MCM4, and find that while it broadly resembles other eukaryotes, noteworthy differences exist. MCM4 is constitutively nuclear, signifying that, unlike what is seen in S.cerevisiae, varying subcellular localization of MCM4 is not a mode of replication regulation in Leishmania. Overexpression of MCM4 in Leishmania promastigotes causes progress through S phase faster than usual, implicating a role for MCM4 in the modulation of cell cycle progression. We find for the first time in eukaryotes, an interaction between any of the proteins of the MCM2-7 (MCM4) and PCNA. MCM4 colocalizes with PCNA in S phase cells, in keeping with the MCM2-7 complex being involved not only in replication initiation, but fork elongation as well. Analysis of a LdMCM4 mutant indicates that MCM4 interacts with PCNA via the PIP box motif of MCM4--perhaps as an integral component of the MCM2-7 complex, although we have no direct evidence that MCM4 harboring a PIP box mutation can still functionally associate with the other members of the MCM2-7 complex- and the PIP box motif is important for cell survival and viability. In Leishmania, MCM4 may possibly help in recruiting PCNA to chromatin, a role assigned to MCM10 in other eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Leishmania donovani/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S/fisiología , Western Blotting , Proteínas de Ciclo Celular/genética , ADN Protozoario/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Inmunoprecipitación , Leishmaniasis , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origen de Réplica
4.
Mol Cell Biol ; 28(22): 6954-66, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794356

RESUMEN

Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Fosforilación , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina/metabolismo , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA