Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Semin Cancer Biol ; 100: 17-27, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38494080

RESUMEN

Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Glucólisis/fisiología , Glucosa/metabolismo , Microambiente Tumoral/genética
2.
Chem Commun (Camb) ; 60(12): 1579-1582, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38224119

RESUMEN

A new Ru(II) arene chlorido organometallic complex [(η6-p-cymene)(L)RuCl]PF6 (named as pCYRuL) using 2-bis(quinolin-2-ylmethylene) hydrazine (L) was developed that exhibits potent anticancer activity against castration-resistant prostate cancer (CRPC) (IC50 = 0.71 µM), and it is 45 times more effective than the standard drug cisplatin (IC50 = 31.3 µM) in a castration-resistant human prostatic adenocarcinoma cell line (PC-3) but non-toxic in normal human kidney cells (HK2) as well as normal breast cells (MCF10A) and found that pCYRuL exerted anticancer activity via apoptosis induction and cell cycle arrest in the G2/M phase of PC-3 cells.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias de la Próstata Resistentes a la Castración , Quinolinas , Rutenio , Masculino , Humanos , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Rutenio/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Proliferación Celular , Quinolinas/farmacología , Línea Celular Tumoral
3.
Arch Microbiol ; 206(1): 46, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153595

RESUMEN

We examined literature on Mycobacterium tuberculosis (Mtb) subsequent to its genome release, spanning years 1999-2020. We employed scientometric mapping, entity mining, visualization techniques, and PubMed and PubTator databases. Most popular keywords, most active research groups, and growth in quantity of publications were determined. By gathering annotations from the PubTator, we determined direction of research in the areas of drug hypersensitivity, drug resistance (AMR), and drug-related side effects. Additionally, we examined the patterns in research on Mtb metabolism and various forms of tuberculosis, including skin, brain, pulmonary, extrapulmonary, and latent tuberculosis. We discovered that 2011 had the highest annual growth rate of publications, at 19.94%. The USA leads the world in publications with 18,038, followed by China with 14,441, and India with 12,158 publications. Studies on isoniazid and rifampicin resistance showed an enormous increase. Non-tuberculous mycobacteria also been the subject of more research in effort to better understand Mtb physiology and as model organisms. Researchers also looked at co-infections like leprosy, hepatitis, plasmodium, HIV, and other opportunistic infections. Host perspectives like immune response, hypoxia, and reactive oxygen species, as well as comorbidities like arthritis, cancer, diabetes, and kidney disease etc. were also looked at. Symptomatic aspects like fever, coughing, and weight loss were also investigated. Vitamin D has gained popularity as a supplement during illness recovery, however, the interest of researchers declined off late. We delineated dominant researchers, journals, institutions, and leading nations globally, which is crucial for aligning ongoing and evolving landscape of TB research efforts. Recognising the dominant patterns offers important information about the areas of focus for current research, allowing biomedical scientists, clinicians, and organizations to strategically coordinate their efforts with the changing priorities in the field of tuberculosis research.


Asunto(s)
Mycobacterium tuberculosis , Infecciones Oportunistas , Tuberculosis , Humanos , Tuberculosis/tratamiento farmacológico , Isoniazida , Mycobacterium tuberculosis/genética , Descubrimiento de Drogas
4.
Drug Discov Today ; 28(9): 103686, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37379904

RESUMEN

Drug resistance causes catastrophic cancer treatment failures. Mutations in target proteins with altered drug binding indicate a main mechanism of cancer drug resistance (CDR). Global research has generated considerable CDR-related data and well-established knowledge bases and predictive tools. Unfortunately, these resources are fragmented and underutilized. Here, we examine computational resources for exploring CDR caused by target mutations, analyzing these tools based on their functional characteristics, data capacity, data sources, methodologies and performance. We also discuss their disadvantages and provide examples of how potential inhibitors of CDR have been discovered using these resources. This toolkit is designed to help specialists explore resistance occurrence effectively and to explain resistance prediction to non-specialists easily.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Resistencia a Antineoplásicos/genética , Mutación , Proteínas , Neoplasias/tratamiento farmacológico , Neoplasias/genética
5.
ACS Omega ; 8(20): 17552-17562, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251149

RESUMEN

A new series of thiazole central scaffold-based small molecules of hLDHA inhibitors were designed using an in silico approach. Molecular docking analysis of designed molecules with hLDHA (PDB ID: 1I10) demonstrates that Ala 29, Val 30, Arg 98, Gln 99, Gly 96, and Thr 94 possessed strong interaction with the compounds. Compounds 8a, 8b, and 8d showed good binding affinity (-8.1 to -8.8 kcal/mol), whereas an additional interaction of NO2 at the ortho position in compounds 8c with Gln 99 through hydrogen bonding enhanced the affinity to -9.8 kcal/mol. Selected high-scored compounds were synthesized and screened for hLDHA inhibitory activities and in vitro anticancer activity in six cancer cell lines. Biochemical enzyme inhibition assays showed the highest hLDHA inhibitory activity observed with compounds 8b, 8c, and 8l. Compounds 8b, 8c, 8j, 8l, and 8m depicted significant anticancer activities, exhibiting IC50 values in the range of 1.65-8.60 µM in HeLa and SiHa cervical cancer cell lines. Compounds 8j and 8m exhibited notable anticancer activity with IC50 values of 7.90 and 5.15 µM, respectively, in liver cancer cells (HepG2). Interestingly, compounds 8j and 8m did not induce noticeable toxicity in the human embryonic kidney cells (HEK293). Insilico absorption, distribution, metabolism, and excretion profiling demonstrates that the compounds possess drug-likeness, and results may pave the way for the development of novel thiazole-based biologically active small molecules for therapeutics.

6.
Semin Cancer Biol ; 91: 143-157, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871635

RESUMEN

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Transducción de Señal , Fosforilación
7.
Nature ; 615(7954): 920-924, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922593

RESUMEN

Targeting critical epigenetic regulators reverses aberrant transcription in cancer, thereby restoring normal tissue function1-3. The interaction of menin with lysine methyltransferase 2A (KMT2A), an epigenetic regulator, is a dependence in acute leukaemia caused by either rearrangement of KMT2A or mutation of the nucleophosmin 1 gene (NPM1)4-6. KMT2A rearrangements occur in up to 10% of acute leukaemias and have an adverse prognosis, whereas NPM1 mutations occur in up to 30%, forming the most common genetic alteration in acute myeloid leukaemia7,8. Here, we describe the results of the first-in-human phase 1 clinical trial investigating revumenib (SNDX-5613), a potent and selective oral inhibitor of the menin-KMT2A interaction, in patients with relapsed or refractory acute leukaemia (ClinicalTrials.gov, NCT04065399). We show that therapy with revumenib was associated with a low frequency of grade 3 or higher treatment-related adverse events and a 30% rate of complete remission or complete remission with partial haematologic recovery (CR/CRh) in the efficacy analysis population. Asymptomatic prolongation of the QT interval on electrocardiography was identified as the only dose-limiting toxicity. Remissions occurred in leukaemias refractory to multiple previous lines of therapy. We demonstrate clearance of residual disease using sensitive clinical assays and identify hallmarks of differentiation into normal haematopoietic cells, including differentiation syndrome. These data establish menin inhibition as a therapeutic strategy for susceptible acute leukaemia subtypes.


Asunto(s)
Antineoplásicos , N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Nucleofosmina , Proteínas Proto-Oncogénicas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/tratamiento farmacológico , Nucleofosmina/genética , Pronóstico , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Inducción de Remisión
8.
Semin Cancer Biol ; 90: 1-14, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36706846

RESUMEN

As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies. Similarly to what occurs in particular physiological settings, MCT1 and MCT4 are able to mediate lactate shuttles among cancer cells, and also between cancer and stromal cells in the tumour microenvironment. This form of metabolic cooperation is responsible for important cancer aggressiveness features, such as cell proliferation, survival, angiogenesis, migration, invasion, metastasis, immune tolerance and therapy resistance. The growing understanding of MCT functions and regulation is offering a new path to the design of novel inhibitors that can be foreseen in clinical practices. This review provides an overview of the role of MCT isoforms in cancer and summarizes the recent advances in their pharmacological targeting, highlighting the potential of new potent and selective MCT1 and/or MCT4 inhibitors in cancer therapeutics, and anticipating its inclusion in clinical practice.


Asunto(s)
Neoplasias , Protones , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Glucólisis , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Microambiente Tumoral
9.
Arch Biochem Biophys ; 734: 109483, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36513132

RESUMEN

The presence of the G-quadruplex (G4) structure in the promoter region of the human bcl-2 oncogenes makes it a promising target for developing anti-cancer therapeutics. Bcl-2 inhibits apoptosis, and its frequent overexpression in cancer cells contributes to tumor initiation, progression, and resistance to therapy. Small molecules that can specifically bind to bcl-2 G4 with high affinity and selectivity are remaining elusive. Here, we report that small molecule 1,3-bis-) furane-2yl-methylidene-amino) guanidine (BiGh) binds to bcl-2 G4 DNA structure with very high affinity and selectivity over other genomic G4 DNA structures and duplex DNA. BiGh stabilizes folded parallel conformation of bcl-2 G4 via non-covalent and electrostatic interactions and increases the thermal stabilization up to 15 °C. The ligand significantly suppresses the bcl-2 transcription in HeLa cells by a G4-dependent mechanism and induces cell cycle arrest which promotes apoptosis. The in silico ADME profiling confirms the potential 'drug-likeness' of BiGh. Our results showed that BiGh stabilizes the bcl-2 G-quadruplex motif, downregulates the bcl-2 gene transcription as well as translation process in cervical cancer cells, and exhibits potential anti-cancer activity. This work provides a potential platform for the development of lead compound(s) as G4 stabilizers with drug-like properties of BiGh for cancer therapeutics.


Asunto(s)
G-Cuádruplex , Humanos , Células HeLa , Oncogenes , ADN/metabolismo , Expresión Génica , Ligandos
10.
J Clin Oncol ; 41(10): 1864-1875, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459673

RESUMEN

PURPOSE: Chronic graft-versus-host disease (cGVHD) remains the major cause of late morbidity after allogeneic hematopoietic cell transplantation. Colony-stimulating factor 1 receptor (CSF-1R)-dependent macrophages promote cGVHD fibrosis, and their elimination in preclinical studies ameliorated cGVHD. Axatilimab is a humanized monoclonal antibody that inhibits CSF-1R signaling and restrains macrophage development. PATIENTS AND METHODS: This phase I (phI)/phase II (phII) open-label study (ClinicalTrials.gov identifier: NCT03604692) evaluated safety, tolerability, and efficacy of axatilimab in patients age ≥ 6 years with active cGVHD after ≥ 2 prior systemic therapy lines. Primary objectives in phI were to identify the optimal biologic and recommended phII dose and in phII to evaluate the overall (complete and partial) response rate (ORR) at the start of treatment cycle 7. RESULTS: Forty enrolled patients (17 phI; 23 phII) received at least one axatilimab dose. In phI, a dose of 3 mg/kg given once every 4 weeks met the optimal biologic dose definition. Two dose-limiting toxicities occurred at the 3 mg/kg dose given once every 2 weeks. At least one treatment-related adverse event (TRAE) was observed in 30 patients with grade ≥ 3 TRAEs in eight patients, the majority known on-target effects of CSF-1R inhibition. No cytomegalovirus reactivations occurred. With the 50% ORR at cycle 7 day 1, the phII cohort met the primary efficacy end point. Furthermore, the ORR in the first six cycles, an end point supporting regulatory approvals, was 82%. Responses were seen in all affected organs regardless of prior therapy. Fifty-eight percent of patients reported significant improvement in cGVHD-related symptoms using the Lee Symptom Scale. On-target activity of axatilimab was suggested by the decrease in skin CSF-1R-expressing macrophages. CONCLUSION: Targeting profibrotic macrophages with axatilimab is a therapeutically promising novel strategy with a favorable safety profile for refractory cGVHD.


Asunto(s)
Productos Biológicos , Síndrome de Bronquiolitis Obliterante , Enfermedad Injerto contra Huésped , Humanos , Niño , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Productos Biológicos/uso terapéutico , Enfermedad Crónica
11.
Gene ; 851: 146975, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36261091

RESUMEN

G-quadruplex also known as G4 (GQ) structures, are a non-canonical kind of DNA or RNA secondary structure that may develop inside guanine-rich nucleic acid sequences. They may be found in a variety of locations in the human genome, such as gene promoters, 5' untranslated region, and telomeres, among others. Because of their significance in biology, G4 structures are recognized as promising pharmacological targets, particularly for therapeutics against cancer. This has led to the discovery of small molecules that can stabilize G4 structures. Small molecules that interact with quadruplexes offer a wide range of potential applications, including not just as medications but also as sensors for quadruplexes structures. The BCL-2 is a proto-oncogene that often gets mutated in lethal cancer and could be an interesting target for developing an anti-cancer drug. In the present study, we have employed various biophysical techniques such as fluorescence, CD, Isothermal calorimetry, gel retardation, and PCR stop assay, indicating that Guanidine derivatives GD-1 and GD-2 selectively interact with high affinity with BCL-2 GQ over other G-quadruplex DNA and duplex DNA. The most promising small molecule GD-1 increases the thermostability of the BCL-2 GQ structure by 12°C. Our biological experiments such as ROS generation, qRT-PCR, western blot, TFP based reporter assay, show that the GD-1 ligand causes a synthetic lethal interaction by suppressing the expression of BCL-2 genes via interaction and stabilization of its promoter GQ strucure in HeLa cells and act as a potential anti-cancer agent.


Asunto(s)
G-Cuádruplex , Humanos , Genes bcl-2 , Células HeLa , Guanidina , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ADN/metabolismo
12.
Drug Discov Today ; 27(9): 2551-2561, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709931

RESUMEN

B cell lymphoma 2 (BCL2) overexpression in a range of human tumors is often related to chemotherapy resistance and poor prognosis. GC-rich regions upstream of the P1 promoter in human BCL2 can form G-quadruplex (G4) structures through the stacking of four Hoogsteen-paired guanine bases. Stabilizing the G4 fold implies the inhibition of BCL2 expression and, thus, small molecules that selectively bind to the G4 are promising anticancer candidates. In this review, we discuss the structural aspects, binding affinity, selectivity, and biological activity of well-characterized BCL2 G4 binding ligands in vitro and in vivo. We also explore future directions in the research and development of G4-based anticancer therapeutics.


Asunto(s)
G-Cuádruplex , Humanos , Ligandos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-bcl-2
13.
RSC Adv ; 12(13): 7594-7604, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35424772

RESUMEN

We selected the G-quadruplex motif located in the nuclease-hypersensitive elements (NHE) III1 region of the c-Myc promoter and for the first time performed its interaction studies with a designed peptide (QW10). Our CD results showed that the peptide bound to the c-Myc G-quadruplex and induced a significant blue shift in the positive peak of 20 nm in KCl alone or with 40wt% PEG200 or 20wt% PEG8000 in comparison to NaCl. Our Native Gel results confirmed that peptide binding destabilized the duplex and stabilized the unimolecular G-quadruplex and not binding to i-motif. UV thermal results confirmed destabilization of bimolecular structure and stabilization of unimolecular G-quadruplex. QW10 showed preferential binding towards c-MYC promoter G4 with binding constant (K b) values of the order of 0.05 ± 0.2 µM, 0.12 ± 0.1 µM and 0.05 ± 0.3 µM for complexes in K+ alone or 40wt% PEG 200 or 20wt% PEG 8000 respectively. QW10 showed preferential cytotoxicity with IC50 values of 11.10 µM and 6.44 µM after 72 and 96 hours' incubation on Human Breast Carcinoma MDA-MB 231 cells and was found to be non-toxic with Human Embryonic Kidney (HEK-1) cells. Interestingly, we observed reduction of c-Myc gene expression by 2.5 fold due to QW10 binding and stabilizing c-MYC G4. Our study for the first time provides an expanded overview of significant structural change in human c-Myc promoter G-quadruplex upon peptide binding in potassium.

14.
PLoS One ; 17(2): e0263736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35134089

RESUMEN

Sudden emergence and rapid spread of COVID-19 created an inevitable need for expansion of the COVID-19 laboratory testing network across the world. The strategy to test-track-treat was advocated for quick detection and containment of the disease. Being the second most populous country in the world, India was challenged to make COVID-19 testing available and accessible in all parts of the country. The molecular laboratory testing network was augmented expeditiously, and number of laboratories was increased from one in January 2020 to 2951 till mid-September, 2021. This rapid expansion warranted the need to have inbuilt systems of quality control/ quality assurance. In addition to the ongoing inter-laboratory quality control (ILQC), India implemented an External Quality Assurance Program (EQAP) with assistance from World Health Organization (WHO) and Royal College of Pathologists, Australasia. Out of the 953 open system rRTPCR laboratories in both public and private sector who participated in the first round of EQAP, 891(93.4%) laboratories obtained a passing score of > = 80%. The satisfactory performance of Indian COVID-19 testing laboratories has boosted the confidence of the public and policy makers in the quality of testing. ILQC and EQAP need to continue to ensure adherence of the testing laboratories to the desired quality standards.


Asunto(s)
Prueba de COVID-19/normas , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/normas , Laboratorios/normas , Tamizaje Masivo/normas , Garantía de la Calidad de Atención de Salud/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , COVID-19/epidemiología , COVID-19/genética , COVID-19/virología , Humanos , India/epidemiología , Control de Calidad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos
15.
J Cell Physiol ; 237(1): 450-465, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569616

RESUMEN

Acute myeloid leukemia (AML) is a common hematological disorder with heterogeneous nature that resulted from blocked myeloid differentiation and an enhanced number of immature myeloid progenitors. During several decades, different factors, including cytogenetic, genetic, and epigenetic have been reported to contribute to the pathogenesis of AML by inhibiting the differentiation and ensuring the proliferation of myeloid blast cells. Recently, long noncoding RNAs (lncRNAs) have been considered as potential diagnostic, therapeutic, and prognostic factors in different human malignancies including AML. Altered expression of lncRNAs is correlated with the transformation of hematopoietic stem and progenitor cells into leukemic blast cells because of their distinct role in the key cellular processes. We discuss the significant role of lncRNAs in the proliferation, survival, differentiation, leukemic stem cells in AML and their involvement in different molecular pathways (insulin-like growth factor type I receptor, FLT3, c-KIT, Wnt, phosphatidylinositol 3-kinase/protein kinase-B, microRNAs), and associated mechanisms such as autophagy, apoptosis, and glucose metabolism. In addition, we aim to highlight the role of lncRNAs as reliable biomarkers for diagnosis, prognosis, and drug resistance for precision medicine in AML.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , ARN Largo no Codificante , Carcinogénesis , Resistencia a Medicamentos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , MicroARNs/genética , MicroARNs/uso terapéutico , ARN Largo no Codificante/metabolismo
16.
Environ Toxicol Pharmacol ; 88: 103740, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34506906

RESUMEN

The accumulation of heavy metals (HMs) in soil is presently a significant threat to the environment. The Cu, Mn, Zn, Cd, Pb, Ni, and Co concentrations were assessed in the agricultural soil samples. The results of various contamination indices including contamination factor, geo-accumulation indices, and ecological risk indices revealed that Cd is responsible for moderate to high contamination of soil. The multivariate statistical analyses including PCA, HCA, and correlation matrix suggested the mixed origin of HMs in the soil. Ingestion was found to be a primary route of exposure while dermal and inhalation exposure was negligible. Overall, the non-carcinogenic health risks were well within the safe limit to human health. However, healthwise, children were likely to be at greater risk compared with adults, due to their generally increased exposure to toxic agents through hand/mouth ingestion. Moreover, no carcinogenic risks were determined through the inhalation exposure of Cd, Ni, and Co.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Adulto , Agricultura , Niño , Ciudades , Monitoreo del Ambiente , Humanos , India , Neoplasias , Medición de Riesgo
17.
Cancer Res ; 81(3): 658-670, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262126

RESUMEN

Metastatic dissemination remains a significant barrier to successful therapy for melanoma. Wnt5A is a potent driver of invasion in melanoma and is believed to be secreted from the tumor microenvironment (TME). Our data suggest that myeloid-derived suppressor cells (MDSC) in the TME are a major source of Wnt5A and are reliant upon Wnt5A for multiple actions. Knockdown of Wnt5A specifically in the myeloid cells demonstrated a clear decrease in Wnt5A expression within the TME in vivo as well as a decrease in intratumoral MDSC and regulatory T cell (Treg). Wnt5A knockdown also decreased the immunosuppressive nature of MDSC and decreased expression of TGFß1 and arginase 1. In the presence of Wnt5A-depleted MDSC, tumor-infiltrating lymphocytes expressed decreased PD-1 and LAG3, suggesting a less exhausted phenotype. Myeloid-specific Wnt5A knockdown also led to decreased lung metastasis. Tumor-infiltrating MDSC from control animals showed a strong positive correlation with Treg, which was completely ablated in animals with Wnt5A-negative MDSC. Overall, our data suggest that while MDSC contribute to an immunosuppressive and less immunogenic environment, they exhibit an additional function as the major source of Wnt5A in the TME. SIGNIFICANCE: These findings demonstrate that myeloid cells provide a major source of Wnt5A to facilitate metastatic potential in melanoma cells and rely on Wnt5A for their immunosuppressive function.


Asunto(s)
Melanoma/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral , Proteína Wnt-5a/metabolismo , Animales , Antígenos CD/metabolismo , Arginasa/metabolismo , Línea Celular Tumoral , Femenino , Neoplasias Pulmonares/secundario , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Melanoma/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Supresoras de Origen Mieloide/inmunología , Invasividad Neoplásica , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína del Gen 3 de Activación de Linfocitos
18.
Environ Toxicol Pharmacol ; 82: 103563, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310081

RESUMEN

This study determined the heavy metals (HMs) accumulation in different vegetables in different seasons and attributed a serious health hazard to human adults due to the consumption of such vegetables in Jhansi. The total amounts of zinc (Zn), lead (Pb), nickel (Ni), manganese (Mn), copper (Cu), cobalt (Co), and cadmium (Cd) were analysed in 28 composite samples of soil and vegetables (Fenugreek, spinach, eggplant, and chilli) collected from seven agricultural fields. The transfer factor (TF) of HMs from soil to analysed vegetables was calculated, and significant non-carcinogenic health risks due to exposure to analysed heavy metals via consumption of these vegetables were computed. The statistical analysis involving Principal Component Analysis (PCA) and Pearson's correlation matrix suggested that anthropogenic activities were a major source of HMs in the study areas. The target hazard quotient of Cd, Mn, and Pb for fenugreek (2.156, 2.143, and 2.228, respectively) and spinach (3.697, 3.509, 5.539, respectively) exceeded the unity, indicating the high possibilities of non-carcinogenic health risks if regularly consumed by human beings. This study strongly suggests the continuous monitoring of soil, irrigation water, and vegetables to prohibit excessive accumulation in the food chain.


Asunto(s)
Exposición Dietética/análisis , Contaminación de Alimentos/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Verduras/química , Adulto , Capsicum , Monitoreo del Ambiente , Frutas/química , Humanos , India , Hojas de la Planta/química , Medición de Riesgo , Solanum melongena , Spinacia oleracea , Trigonella
19.
Cell Rep ; 33(13): 108571, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33378668

RESUMEN

Here, we report that functional heterogeneity of macrophages in cancer could be determined by the nature of their precursors: monocytes (Mons) and monocytic myeloid-derived suppressor cells (M-MDSCs). Macrophages that are differentiated from M-MDSCs, but not from Mons, are immune suppressive, with a genomic profile matching that of M-MDSCs. Immune-suppressive activity of M-MDSC-derived macrophages is dependent on the persistent expression of S100A9 protein in these cells. S100A9 also promotes M2 polarization of macrophages. Tissue-resident- and Mon-derived macrophages lack expression of this protein. S100A9-dependent immune-suppressive activity of macrophages involves transcription factor C/EBPß. The presence of S100A9-positive macrophages in tumor tissues is associated with shorter survival in patients with head and neck cancer and poor response to PD-1 antibody treatment in patients with metastatic melanoma. Thus, this study reveals the pathway of the development of immune-suppressive macrophages and suggests an approach to their selective targeting.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Calgranulina A/fisiología , Calgranulina B/fisiología , Terapia de Inmunosupresión , Macrófagos/metabolismo , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Persona de Mediana Edad , Células Supresoras de Origen Mieloide/inmunología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA