Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Rep ; 43(3): 113836, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421874

RESUMEN

Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.


Asunto(s)
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulina/metabolismo , Proteómica , Lipidómica , Insulinoma/metabolismo , Neoplasias Pancreáticas/metabolismo , Exocitosis , Vesículas Secretoras/metabolismo , Gránulos Citoplasmáticos/metabolismo
2.
Front Cell Neurosci ; 17: 1166641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868194

RESUMEN

The possible applications for human retinal organoids (HROs) derived from human induced pluripotent stem cells (hiPSC) rely on the robustness and transferability of the methodology for their generation. Standardized strategies and parameters to effectively assess, compare, and optimize organoid protocols are starting to be established, but are not yet complete. To advance this, we explored the efficiency and reliability of a differentiation method, called CYST protocol, that facilitates retina generation by forming neuroepithelial cysts from hiPSC clusters. Here, we tested seven different hiPSC lines which reproducibly generated HROs. Histological and ultrastructural analyses indicate that HRO differentiation and maturation are regulated. The different hiPSC lines appeared to be a larger source of variance than experimental rounds. Although previous reports have shown that HROs in several other protocols contain a rather low number of cones, HROs from the CYST protocol are consistently richer in cones and with a comparable ratio of cones, rods, and Müller glia. To provide further insight into HRO cell composition, we studied single cell RNA sequencing data and applied CaSTLe, a transfer learning approach. Additionally, we devised a potential strategy to systematically evaluate different organoid protocols side-by-side through parallel differentiation from the same hiPSC batches: In an explorative study, the CYST protocol was compared to a conceptually different protocol based on the formation of cell aggregates from single hiPSCs. Comparing four hiPSC lines showed that both protocols reproduced key characteristics of retinal epithelial structure and cell composition, but the CYST protocol provided a higher HRO yield. So far, our data suggest that CYST-derived HROs remained stable up to at least day 200, while single hiPSC-derived HROs showed spontaneous pathologic changes by day 200. Overall, our data provide insights into the efficiency, reproducibility, and stability of the CYST protocol for generating HROs, which will be useful for further optimizing organoid systems, as well as for basic and translational research applications.

3.
Environ Sci Pollut Res Int ; 30(1): 407-419, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35900624

RESUMEN

Freshwater grazers are suitable organisms to investigate the fate of environmental pollutants, such as weathered multi-walled carbon nanotubes (wMWCNTs). One key process is the uptake of ingested materials into digestive or absorptive cells. To address this, we investigated the localization of wMWCNTs in the intestinal tracts of the mud snail Lymnaea stagnalis (L. stagnalis) and the mayfly Rhithrogena semicolorata (R. semicolorata). In L. stagnalis, bundles of wMWCNTs could be detected in the midgut lumen, whereas only single wMWCNTs could be detected in the lumina of the digestive gland. Intracellular uptake of wMWCNTs was detected by transmission electron microscopy (TEM) but was restricted to the cells of the digestive gland. In larvae of R. semicolorata, irritations of the microvilli and damages in the apical parts of the epithelial gut cells were detected after feeding with 1 to 10 mg/L wMWCNTs. In both models, we detected fibrillar structures in close association with the epithelial cells that formed peritrophic membranes (PMs). The PM may cause a reduced transmission of wMWCNT bundles into the epithelium by forming a filter barrier and potentially protecting the cells from the wMWCNTs. As a result, the uptake of wMWCNTs into cells is rare in mud snails and may not occur at all in mayfly larvae. In addition, we monitor physiological markers such as levels of glycogen or triglycerides and the RNA/DNA ratio. This ratio was significantly affected in L. stagnalis after 24 days with 10 mg/L wMWCNTs, but not in R. semicolorata after 28 days and 10 mg/L wMWCNTs. However, significant effects on the energy status of R. semicolorata were analysed after 28 days of exposure to 1 mg/L wMWCNTs. Furthermore, we observed a significant reduction of phagosomes per enterocyte cell in mayfly larvae at a concentration of 10 mg/L wMWCNTs (p < 0.01).


Asunto(s)
Ephemeroptera , Nanotubos de Carbono , Animales , Lymnaea/fisiología , Larva , Células Epiteliales , Agua Dulce
4.
Nat Commun ; 13(1): 6183, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261438

RESUMEN

Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.


Asunto(s)
Degeneración Macular , Organoides , Humanos , Actomiosina , Factor de Crecimiento Similar a EGF de Unión a Heparina , Canales Iónicos , Degeneración Macular/patología , Organoides/patología , Células Fotorreceptoras , Retina/patología , Factores de Necrosis Tumoral
5.
J Clin Invest ; 132(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35482419

RESUMEN

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid-derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Retiniana , Animales , Células Ependimogliales , Humanos , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos , Degeneración Retiniana/metabolismo , Degeneración Retiniana/terapia
6.
Small ; 18(13): e2104758, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132776

RESUMEN

Stem cell bioengineering and therapy require different model systems and materials in different stages of development. If a chemically defined biomatrix system can fulfill most tasks, it can minimize the discrepancy among various setups. By screening biomaterials synthesized through a coacervation-mediated self-assembling mechanism, a biomatrix system optimal for 2D human mesenchymal stromal cell (hMSC) culture and osteogenesis is identified. Its utility for hMSC bioengineering is further demonstrated in coating porous bioactive glass scaffolds and nanoparticle synthesis for esiRNA delivery to knock down the SOX-9 gene with high delivery efficiency. The self-assembled injectable system is further utilized for 3D cell culture, segregated co-culture of hMSC with human umbilical vein endothelial cells (HUVEC) as an angiogenesis model, and 3D bioprinting. Most interestingly, the coating of bioactive glass with the self-assembled biomatrix not only supports the proliferation and osteogenesis of hMSC in the 3D scaffold but also induces the amorphous bioactive glass (BG) scaffold surface to form new apatite crystals resembling bone-shaped plate structures. Thus, the self-assembled biomatrix system can be utilized in various dimensions, scales, and geometries for many different bioengineering applications.


Asunto(s)
Bioimpresión , Células Madre Mesenquimatosas , Diferenciación Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Osteogénesis , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
7.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163219

RESUMEN

Prostate cancer (PCa) is the most frequent malignancy in older men with a high propensity for bone metastases. Characteristically, PCa causes osteosclerotic lesions as a result of disrupted bone remodeling. Extracellular vesicles (EVs) participate in PCa progression by conditioning the pre-metastatic niche. However, how EVs mediate the cross-talk between PCa cells and osteoprogenitors in the bone microenvironment remains poorly understood. We found that EVs derived from murine PCa cell line RM1-BM increased metabolic activity, vitality, and cell proliferation of osteoblast precursors by >60%, while significantly impairing mineral deposition (-37%). The latter was further confirmed in two complementary in vivo models of ossification. Accordingly, gene and protein set enrichments of osteoprogenitors exposed to EVs displayed significant downregulation of osteogenic markers and upregulation of proinflammatory factors. Additionally, transcriptomic profiling of PCa-EVs revealed the abundance of three microRNAs, miR-26a-5p, miR-27a-3p, and miR-30e-5p involved in the suppression of BMP-2-induced osteogenesis in vivo, suggesting the critical role of these EV-derived miRNAs in PCa-mediated suppression of osteoblast activity. Taken together, our results indicate the importance of EV cargo in cancer-bone cross-talk in vitro and in vivo and suggest that exosomal miRNAs may contribute to the onset of osteosclerotic bone lesions in PCa.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Osteoblastos/fisiología , Neoplasias de la Próstata/genética , Animales , Huesos/metabolismo , Huesos/fisiología , Comunicación Celular , Línea Celular Tumoral , Proliferación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Vesículas Extracelulares/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Masculino , Células Madre Mesenquimatosas , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Osteogénesis , Transcriptoma/genética , Microambiente Tumoral
8.
Cancers (Basel) ; 13(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34885085

RESUMEN

In-depth characterization has introduced new molecular subtypes of gastric cancer (GC). To identify these, new approaches and techniques are required. Liquid biopsies are trendsetting and provide an easy and feasible method to identify and to monitor GC patients. In a prospective cohort of 87 GC patients, extracellular vesicles (EVs) were isolated from 250 µL of plasma. The total RNA was isolated with TRIZOL. The total RNA amount and the relative mRNA levels of CD44, PTEN, and FASN were measured by qRT-PCR. The isolation of EVs and their contained mRNA was possible in all 87 samples investigated. The relative mRNA levels of PTEN were higher in patients already treated by chemotherapy than in chemo-naïve patients. In patients who had undergone neoadjuvant chemotherapy followed by gastrectomy, a decrease in the total RNA amount was observed after neoadjuvant chemotherapy and gastrectomy, while FASN and CD44 mRNA levels decreased only after gastrectomy. The amount of RNA and the relative mRNA levels of FASN and CD44 in EVs were affected more significantly by chemotherapy and gastrectomy than by chemotherapy alone. Therefore, they are a potential biomarker for monitoring treatment response. Future analyses are needed to identify GC-specific key RNAs in EVs, which could be used for the diagnosis of gastric cancer patients in order to determine their molecular subtype and to accompany the therapeutic response.

9.
Sci Immunol ; 6(65): eabf7473, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739342

RESUMEN

Inflammatory bowel disease (IBD) is characterized by inappropriate immune responses to the microbiota in genetically susceptible hosts, but little is known about the pathways that link individual genetic alterations to microbiota-dependent inflammation. Here, we demonstrated that the loss of X-linked inhibitor of apoptosis protein (XIAP), a gene associated with Mendelian IBD, rendered Paneth cells sensitive to microbiota-, tumor necrosis factor (TNF)­, receptor-interacting protein kinase 1 (RIPK1)­, and RIPK3-dependent cell death. This was associated with deficiency in Paneth cell­derived antimicrobial peptides and alterations in the stratification and composition of the microbiota. Loss of XIAP was not sufficient to elicit intestinal inflammation but provided susceptibility to pathobionts able to promote granulomatous ileitis, which could be prevented by administration of a Paneth cell­derived antimicrobial peptide. These data reveal a pathway critical for host-microbial cross-talk, which is required for intestinal homeostasis and the prevention of inflammation and which is amenable to therapeutic targeting.


Asunto(s)
Inflamación/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Intestinos/inmunología , Microbiota/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/inmunología , Animales , Péptidos Antimicrobianos/administración & dosificación , Péptidos Antimicrobianos/biosíntesis , Péptidos Antimicrobianos/farmacología , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/patología , Proteínas Inhibidoras de la Apoptosis/deficiencia , Proteínas Inhibidoras de la Apoptosis/genética , Intestinos/efectos de los fármacos , Intestinos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/efectos de los fármacos , Células de Paneth/química , Células de Paneth/inmunología , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/genética
10.
Gut ; 70(3): 485-498, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503845

RESUMEN

OBJECTIVE: The intestinal epithelium is a rapidly renewing tissue which plays central roles in nutrient uptake, barrier function and the prevention of intestinal inflammation. Control of epithelial differentiation is essential to these processes and is dependent on cell type-specific activity of transcription factors which bind to accessible chromatin. Here, we studied the role of SET Domain Bifurcated Histone Lysine Methyltransferase 1, also known as ESET (SETDB1), a histone H3K9 methyltransferase, in intestinal epithelial homeostasis and IBD. DESIGN: We investigated mice with constitutive and inducible intestinal epithelial deletion of Setdb1, studied the expression of SETDB1 in patients with IBD and mouse models of IBD, and investigated the abundance of SETDB1 variants in healthy individuals and patients with IBD. RESULTS: Deletion of intestinal epithelial Setdb1 in mice was associated with defects in intestinal epithelial differentiation, barrier disruption, inflammation and mortality. Mechanistic studies showed that loss of SETDB1 leads to de-silencing of endogenous retroviruses, DNA damage and intestinal epithelial cell death. Predicted loss-of-function variants in human SETDB1 were considerably less frequently observed than expected, consistent with a critical role of SETDB1 in human biology. While the vast majority of patients with IBD showed unimpaired mucosal SETDB1 expression, comparison of IBD and non-IBD exomes revealed over-representation of individual rare missense variants in SETDB1 in IBD, some of which are predicted to be associated with loss of function and may contribute to the pathogenesis of intestinal inflammation. CONCLUSION: SETDB1 plays an essential role in intestinal epithelial homeostasis. Future work is required to investigate whether rare variants in SETDB1 contribute to the pathogenesis of IBD.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Animales , Diferenciación Celular , Células Epiteliales/metabolismo , Femenino , Silenciador del Gen , Homeostasis/genética , Humanos , Mutación con Pérdida de Función , Masculino , Ratones
11.
Stem Cell Reports ; 14(3): 374-389, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160519

RESUMEN

Maintenance of a healthy photoreceptor-retinal pigment epithelium (RPE) interface is essential for vision. At the center of this interface, apical membrane protrusions stemming from the RPE ensheath photoreceptor outer segments (POS), and are possibly involved in the recycling of POS through phagocytosis. The molecules that regulate POS ensheathment and its relationship to phagocytosis remain to be deciphered. By means of ultrastructural analysis, we revealed that Mer receptor tyrosine kinase (MERTK) ligands, GAS6 and PROS1, rather than αVß5 integrin receptor ligands, triggered POS ensheathment by human embryonic stem cell (hESC)-derived RPE. Furthermore, we found that ensheathment is required for POS fragmentation before internalization. Consistently, POS ensheathment, fragmentation, and internalization were abolished in MERTK mutant RPE, and rescue of MERTK expression in retinitis pigmentosa (RP38) patient RPE counteracted these defects. Our results suggest that loss of ensheathment due to MERTK dysfunction might contribute to vision impairment in RP38 patients.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/enzimología , Epitelio Pigmentado de la Retina/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Línea Celular , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/ultraestructura , Humanos , Ligandos , Mutación/genética , Fagocitosis , Receptores de Vitronectina/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/ultraestructura , Epitelio Pigmentado de la Retina/ultraestructura , Tirosina Quinasa c-Mer/genética
12.
Proc Natl Acad Sci U S A ; 116(40): 19983-19988, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527264

RESUMEN

Pancreatic ß cells store insulin within secretory granules which undergo exocytosis upon elevation of blood glucose levels. Crinophagy and autophagy are instead responsible to deliver damaged or old granules to acidic lysosomes for intracellular degradation. However, excessive consumption of insulin granules can impair ß cell function and cause diabetes. Atp6ap2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy. Here, we show that Cre recombinase-mediated conditional deletion of Atp6ap2 in mouse ß cells causes a dramatic accumulation of large, multigranular vacuoles in the cytoplasm, with reduction of insulin content and compromised glucose homeostasis. Loss of insulin stores and gigantic vacuoles were also observed in cultured insulinoma INS-1 cells upon CRISPR/Cas9-mediated removal of Atp6ap2. Remarkably, these phenotypic alterations could not be attributed to a deficiency in autophagy or acidification of lysosomes. Together, these data indicate that Atp6ap2 is critical for regulating the stored insulin pool and that a balanced regulation of granule turnover is key to maintaining ß cell function and diabetes prevention.


Asunto(s)
Eliminación de Gen , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Animales , Autofagia , Sistemas CRISPR-Cas , Citosol/metabolismo , Femenino , Silenciador del Gen , Insulinoma/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Fenotipo , Regiones Promotoras Genéticas , ARN Interferente Pequeño/metabolismo , Ratas , Receptores de Superficie Celular/metabolismo , Receptores de Estrógenos/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/metabolismo
13.
Adv Biosyst ; 3(9): e1900128, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-32648654

RESUMEN

The mechanical properties of cancer cells and their microenvironment contribute to breast cancer progression. While mechanosensing has been extensively studied using 2D substrates, much less is known about it in a physiologically more relevant 3D context. Here it is demonstrated that breast cancer tumor spheroids, growing in 3D polyethylene glycol-heparin hydrogels, are sensitive to their environment stiffness. During tumor spheroid growth, compressive stresses of up to 2 kPa build up, as quantitated using elastic polymer beads as stress sensors. Atomic force microscopy reveals that tumor spheroid stiffness increases with hydrogel stiffness. Also, constituent cell stiffness increases in a Rho associated kinase (ROCK)- and F-actin-dependent manner. Increased hydrogel stiffness correlated with attenuated tumor spheroid growth, a higher proportion of cells in G0/G1 phase, and elevated levels of the cyclin-dependent kinase inhibitor p21. Drug-mediated ROCK inhibition not only reverses cell stiffening upon culture in stiff hydrogels but also increases tumor spheroid growth. Taken together, a mechanism by which the growth of a tumor spheroid can be regulated via cytoskeleton rearrangements in response to its mechanoenvironment is revealed here. Thus, the findings contribute to a better understanding of how cancer cells react to compressive stress when growing under confinement in stiff environments.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Hidrogeles/farmacología , Mecanotransducción Celular/genética , Esferoides Celulares/efectos de los fármacos , Quinasas Asociadas a rho/genética , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Actinas/genética , Actinas/metabolismo , Fenómenos Biomecánicos , Técnicas de Cultivo de Célula , Proliferación Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Heparina/química , Heparina/farmacología , Humanos , Hidrogeles/síntesis química , Células MCF-7 , Polietilenglicoles/química , Polietilenglicoles/farmacología , Análisis de la Célula Individual/métodos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Quinasas Asociadas a rho/metabolismo
14.
J Biol Chem ; 293(36): 13834-13848, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30018135

RESUMEN

The endocytic pathway plays an instrumental role in recycling internalized molecules back to the plasma membrane or in directing them to lysosomes for degradation. We recently reported a new role of endosomes-the delivery of components from extracellular vesicles (EVs) to the nucleoplasm of recipient cells. Using indirect immunofluorescence, FRET, immunoisolation techniques, and RNAi, we report here a tripartite protein complex (referred to as the VOR complex) that is essential for the nuclear transfer of EV-derived components by orchestrating the specific localization of late endosomes into nucleoplasmic reticulum. We found that the VOR complex contains the endoplasmic reticulum-localized vesicle-associated membrane protein (VAMP)-associated protein A (VAP-A), the cytoplasmic oxysterol-binding protein-related protein 3 (ORP3), and late endosome-associated small GTPase Rab7. The silencing of VAP-A or ORP3 abrogated the association of Rab7-positive late endosomes with nuclear envelope invaginations and, hence, the transport of endocytosed EV-derived components to the nucleoplasm of recipient cells. We conclude that the VOR complex can be targeted to inhibit EV-mediated intercellular communication, which can have therapeutic potential for managing cancer in which the release of EVs is dysregulated.


Asunto(s)
Proteínas Portadoras/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Complejos Multiproteicos/química , Membrana Nuclear/metabolismo , Proteínas de Transporte Vesicular/fisiología , Comunicación Celular , Células Cultivadas , Endocitosis , Proteínas de Unión a Ácidos Grasos , Humanos , Complejos Multiproteicos/fisiología , Proteínas R-SNARE , Receptores de Esteroides , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
15.
ACS Appl Mater Interfaces ; 10(17): 14418-14425, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29644843

RESUMEN

Cross-linking biomolecules with electroconductive nanostructures through noncovalent interactions can result in modular networks with defined biological functions and physical properties such as electric conductivity and viscoelasticity. Moreover, the resulting matrices can exhibit interesting features caused by the dynamic assembly process, such as self-healing and molecular ordering. In this paper, we present a physical hydrogel system formed by mixing peptide-polyethylene glycol and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate. This combinatorial approach, which uses different modular building blocks, could lead to high tunability on aspects of rheology and electrical impedance. The proposed physical hydrogel system is characterized by both a self-healing ability and injectability. Interestingly, the formation of hydrogels at relatively low concentrations led to a network of closer molecular packing of poly(3,4-ethylenedioxythiophene) nanoparticles, reflected by the enhanced conductivity. The biopolymer system can be used to develop three-dimensional cell cultures with incorporated electric stimuli, as evidenced by its contribution to the survival and proliferation of encapsulated mesenchymal stromal cells and their differentiation upon electrical stimulation.


Asunto(s)
Hidrogeles/química , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Mesenquimatosas , Polietilenglicoles
16.
Acta Biomater ; 58: 12-25, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576716

RESUMEN

Cancer stem cells (CSCs) are responsible for drug resistance, tumor recurrence, and metastasis in several cancer types, making their eradication a primary objective in cancer therapy. Glioblastoma Multiforme (GBM) tumors are usually composed of a highly infiltrating CSC subpopulation, which has Nestin as a putative marker. Since the majority of these infiltrating cells are able to elude conventional therapies, we have developed gold nanorods (AuNRs) functionalized with an engineered peptide capable of specific recognition and selective eradication of Nestin positive infiltrating GBM-CSCs. These AuNRs generate heat when irradiated by a near-infrared laser, and cause localized cell damage. Nanoparticle internalization assays performed with GBM-CSCs or Nestin negative cells cultured as two-dimensional (2D) monolayers or embedded in three-dimensional (3D) biodegradable-hydrogels of tunable mechanical properties, revealed that the AuNRs were mainly internalized by GBM-CSCs, and not by Nestin negative cells. The AuNRs were taken up via energy-dependent and caveolae-mediated endocytic mechanisms, and were localized inside endosomes. Photothermal treatments resulted in the selective elimination of GBM-CSCs through cell apoptosis, while Nestin negative cells remained viable. Results also indicated that GBM-CSCs embedded in hydrogels were more resistant to AuNR photothermal treatments than when cultured as 2D monolayers. In summary, the combination of our engineered AuNRs with our tunable hydrogel system has shown the potential to provide an in vitro platform for the evaluation and screening of AuNR-based cancer therapeutics, leading to a substantial advancement in the application of AuNRs for targeted GBM-CSC therapy. STATEMENT OF SIGNIFICANCE: There is an urgent need for reliable and efficient therapies for the treatment of Glioblastoma Multiforme (GBM), which is currently an untreatable brain tumor form with a very poor patient survival rate. GBM tumors are mostly comprised of cancer stem cells (CSCs), which are responsible for tumor reoccurrence and therapy resistance. We have developed gold nanorods functionalized with an engineered peptide capable of selective recognition and eradication of GBM-CSCs via heat generation by nanorods upon NIR irradiation. An in vitro evaluation of nanorod therapeutic activities was performed in 3D synthetic-biodegradable hydrogel models with distinct biomechanical cues, and compared to 2D cultures. Results indicated that cells cultured in 3D were more resistant to photothermolysis than in 2D systems.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Glioblastoma , Oro , Hidrogeles/química , Nanotubos/química , Péptidos , Línea Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Oro/química , Oro/farmacología , Humanos , Péptidos/química , Péptidos/farmacología
17.
Acta Biomater ; 44: 178-87, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27506126

RESUMEN

UNLABELLED: Intrahepatic transplantation of allogeneic pancreatic islets offers a promising therapy for type 1 diabetes. However, long-term insulin independency is often not achieved due to severe islet loss shortly after transplantation. To improve islet survival and function, extrahepatic biomaterial-assisted transplantation of pancreatic islets to alternative sites has been suggested. Herein, we present macroporous, star-shaped poly(ethylene glycol) (starPEG)-heparin cryogel scaffolds, covalently modified with adhesion peptides, for the housing of pancreatic islets in three-dimensional (3D) co-culture with adherent mesenchymal stromal cells (MSC) as accessory cells. The implantable biohybrid scaffolds provide efficient transport properties, mechanical protection, and a supportive extracellular environment as a desirable niche for the islets. MSC colonized the cryogel scaffolds and produced extracellular matrix proteins that are important components of the natural islet microenvironment known to facilitate matrix-cell interactions and to prevent cellular stress. Islets survived the seeding procedure into the cryogel scaffolds and secreted insulin after glucose stimulation in vitro. In a rodent model, intact islets and MSC could be visualized within the scaffolds seven days after subcutaneous transplantation. Overall, this demonstrates the potential of customized macroporous starPEG-heparin cryogel scaffolds in combination with MSC to serve as a multifunctional islet supportive carrier for transplantation applications. STATEMENT OF SIGNIFICANCE: Diabetes results in the insufficient production of insulin by the pancreatic ß-cells in the islets of Langerhans. Transplantation of pancreatic islets offers valuable options for treating the disease; however, many transplanted islets often do not survive the transplantation or die shortly thereafter. Co-transplanted, supporting cells and biomaterials can be instrumental for improving islet survival, function and protection from the immune system. In the present study, islet supportive hydrogel sponges were explored for the co-transplantation of islets and mesenchymal stromal cells. Survival and continued function of the supported islets were demonstrated in vitro. The in vivo feasibility of the approach was shown by transplantation in a mouse model.


Asunto(s)
Materiales Biocompatibles/farmacología , Criogeles/farmacología , Islotes Pancreáticos/citología , Células Madre Mesenquimatosas/citología , Animales , Supervivencia Celular/efectos de los fármacos , Heparina/química , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos C57BL , Polietilenglicoles/química , Porosidad , Sus scrofa , Ingeniería de Tejidos , Andamios del Tejido/química , Trasplante Isogénico
18.
Nat Commun ; 7: 11752, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230542

RESUMEN

Immune recognition of cytosolic DNA represents a central antiviral defence mechanism. Within the host, short single-stranded DNA (ssDNA) continuously arises during the repair of DNA damage induced by endogenous and environmental genotoxic stress. Here we show that short ssDNA traverses the nuclear membrane, but is drawn into the nucleus by binding to the DNA replication and repair factors RPA and Rad51. Knockdown of RPA and Rad51 enhances cytosolic leakage of ssDNA resulting in cGAS-dependent type I IFN activation. Mutations in the exonuclease TREX1 cause type I IFN-dependent autoinflammation and autoimmunity. We demonstrate that TREX1 is anchored within the outer nuclear membrane to ensure immediate degradation of ssDNA leaking into the cytosol. In TREX1-deficient fibroblasts, accumulating ssDNA causes exhaustion of RPA and Rad51 resulting in replication stress and activation of p53 and type I IFN. Thus, the ssDNA-binding capacity of RPA and Rad51 constitutes a cell intrinsic mechanism to protect the cytosol from self DNA.


Asunto(s)
Citosol/metabolismo , ADN de Cadena Simple/metabolismo , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Células Cultivadas , ADN de Cadena Simple/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferón Tipo I/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Interferencia de ARN , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
J Cell Sci ; 128(20): 3781-95, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26306492

RESUMEN

Many important signalling cascades operate through specialized signalling endosomes, but a corresponding mechanism has as yet not been described for hematopoietic cytokine receptors. Based on live-cell affinity measurements, we recently proposed that ligand-induced interleukin-4 receptor (IL-4R) complex formation and thus JAK/STAT pathway activation requires a local subcellular increase in receptor density. Here, we show that this concentration step is provided by the internalization of IL-4R subunits through a constitutive, Rac1-, Pak- and actin-mediated endocytosis route that causes IL-4R subunits to become enriched by about two orders of magnitude within a population of cortical endosomes. Consistently, ligand-induced receptor dimers are preferentially detected within these endosomes. IL-4 signalling can be blocked by pharmacological inhibitors targeting the actin polymerization machinery driving receptor internalization, placing endocytosis unambigously upstream of receptor activation. Taken together, these observations demonstrate a role for endocytosis that is mechanistically distinct from the scaffolding function of signalling endosomes in other pathways.


Asunto(s)
Endocitosis/fisiología , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/fisiología , Células HEK293 , Humanos , Subunidad alfa del Receptor de Interleucina-4/genética , Quinasas Janus/genética , Factores de Transcripción STAT/genética
20.
Stem Cells ; 33(1): 79-90, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25183393

RESUMEN

Human daylight vision depends on cone photoreceptors and their degeneration results in visual impairment and blindness as observed in several eye diseases including age-related macular degeneration, cone-rod dystrophies, or late stage retinitis pigmentosa, with no cure available. Preclinical cell replacement approaches in mouse retina have been focusing on rod dystrophies, due to the availability of sufficient donor material from the rod-dominated mouse retina, leaving the development of treatment options for cone degenerations not well studied. Thus, an abundant and traceable source for donor cone-like photoreceptors was generated by crossing neural retina leucine zipper-deficient (Nrl(-/-) ) mice with an ubiquitous green fluorescent protein (GFP) reporter line resulting in double transgenic tg(Nrl(-/-); aGFP) mice. In Nrl(-/-) retinas, all rods are converted into cone-like photoreceptors that express CD73 allowing their enrichment by CD73-based magnetic activated cell sorting prior transplantation into the subretinal space of adult wild-type, cone-only (Nrl(-/-)), or cone photoreceptor function loss 1 (Cpfl1) mice. Donor cells correctly integrated into host retinas, acquired mature photoreceptor morphology, expressed cone-specific markers, and survived for up to 6 months, with significantly increased integration rates in the cone-only Nrl(-/-) retina. Individual retinal ganglion cell recordings demonstrated the restoration of photopic responses in cone degeneration mice following transplantation suggesting, for the first time, the feasibility of daylight vision repair by cell replacement in the adult mammalian retina.


Asunto(s)
Trasplante de Células/métodos , Visión de Colores , Células Fotorreceptoras Retinianas Conos/citología , Degeneración Retiniana/terapia , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microelectrodos , Retina/citología , Degeneración Retiniana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA