Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
EMBO J ; 42(7): e112699, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762427

RESUMEN

The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.


Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribosómicas/genética , Proteómica , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
2.
Cell Rep ; 41(5): 111571, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323262

RESUMEN

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
3.
Nucleic Acids Res ; 50(5): 2872-2888, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35150276

RESUMEN

Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.


Asunto(s)
Poliaminas , Proteínas de Saccharomyces cerevisiae , Humanos , Poliaminas/metabolismo , Interferencia de ARN , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Elife ; 92020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320087

RESUMEN

The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how this occurs remains ill-understood. Unexpectedly, we observed that an imbalance in the levels of the lamina-associated polypeptide 1 (LAP1), an activator of ER-resident Torsin AAA+-ATPases, causes a failure in membrane removal from mitotic chromatin, accompanied by chromosome segregation errors and changes in post-mitotic nuclear morphology. These defects are dependent on a hitherto unknown chromatin-binding region of LAP1 that we have delineated. LAP1-induced NE abnormalities are efficiently suppressed by expression of wild-type but not ATPase-deficient Torsins. Furthermore, a dominant-negative Torsin induces chromosome segregation defects in a LAP1-dependent manner. These results indicate that association of LAP1 with chromatin in the nucleus can be modulated by Torsins in the perinuclear space, shedding new light on the LAP1-Torsin interplay.


Asunto(s)
Cromatina/metabolismo , Segregación Cromosómica/fisiología , Proteínas del Choque Térmico HSC70/metabolismo , Mitosis/fisiología , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Células HCT116 , Proteínas del Choque Térmico HSC70/genética , Células HeLa , Células Hep G2 , Humanos , Chaperonas Moleculares/genética , Membrana Nuclear/metabolismo
5.
RNA ; 25(6): 685-701, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30910870

RESUMEN

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/análogos & derivados , ARN Helicasas DEAD-box/química , Biogénesis de Organelos , ARN Helicasas/química , ARN/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Ratones , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Especificidad por Sustrato
6.
Dev Cell ; 43(2): 141-156.e7, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065306

RESUMEN

During interphase, the nuclear envelope (NE) serves as a selective barrier between cytosol and nucleoplasm. When vertebrate cells enter mitosis, the NE is dismantled in the process of nuclear envelope breakdown (NEBD). Disassembly of nuclear pore complexes (NPCs) is a key aspect of NEBD, required for NE permeabilization and formation of a cytoplasmic mitotic spindle. Here, we show that both CDK1 and polo-like kinase 1 (PLK1) support mitotic NPC disintegration by hyperphosphorylation of Nup98, the gatekeeper nucleoporin, and Nup53, a central nucleoporin linking the inner NPC scaffold to the pore membrane. Multisite phosphorylation of Nup53 critically contributes to its liberation from its partner nucleoporins, including the pore membrane protein NDC1. Initial steps of NPC disassembly in semi-permeabilized cells can be reconstituted by a cocktail of mitotic kinases including cyclinB-CDK1, NIMA, and PLK1, suggesting that the unzipping of nucleoporin interactions by protein phosphorylation is an important principle underlying mitotic NE permeabilization.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Mitosis/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína Quinasa CDC2 , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Células HeLa , Humanos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
7.
Cell Syst ; 4(6): 651-655.e5, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28647475

RESUMEN

High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Línea Celular , Humanos , Aprendizaje Automático , Microscopía/métodos , Fenotipo , Programas Informáticos
8.
Nucleic Acids Res ; 44(20): 9803-9820, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27599843

RESUMEN

Mammalian AATF/Che-1 is essential for embryonic development, however, the underlying molecular mechanism is unclear. By immunoprecipitation of human AATF we discovered that AATF forms a salt-stable protein complex together with neuroguidin (NGDN) and NOL10, and demonstrate that the AATF-NGDN-NOL10 (ANN) complex functions in ribosome biogenesis. All three ANN complex members localize to nucleoli and display a mutual dependence with respect to protein stability. Mapping of protein-protein interaction domains revealed the importance of both the evolutionary conserved WD40 repeats in NOL10 and the UTP3/SAS10 domain in NGDN for complex formation. Functional analysis showed that the ANN complex supports nucleolar steps of 40S ribosomal subunit biosynthesis. All complex members were required for 18S rRNA maturation and their individual depletion affected the same nucleolar cleavage steps in the 5'ETS and ITS1 regions of the ribosomal RNA precursor. Collectively, we identified the ANN complex as a novel functional module supporting the nucleolar maturation of 40S ribosomal subunits. Our data help to explain the described role of AATF in cell proliferation during mouse development as well as its requirement for malignant tumor growth.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , Proteínas Represoras/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Nucléolo Celular/metabolismo , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas de Unión al ARN , Proteínas Represoras/química , Proteínas Represoras/genética , Ribosomas/metabolismo
9.
Nucleic Acids Res ; 44(17): 8465-78, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27530427

RESUMEN

Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3'-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 18S/genética , Receptores de Superficie Celular/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Secuencia Conservada , Microscopía por Crioelectrón , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Biogénesis de Organelos , Unión Proteica , Receptores de Cinasa C Activada , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/metabolismo
10.
Oncotarget ; 7(31): 48887-48904, 2016 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-27385002

RESUMEN

Dysregulation of RNA polymerase I (Pol I)-dependent ribosomal DNA (rDNA) transcription is a consistent feature of malignant transformation that can be targeted to treat cancer. Understanding how rDNA transcription is coupled to the availability of growth factors and nutrients will provide insight into how ribosome biogenesis is maintained in a tumour environment characterised by limiting nutrients. We demonstrate that modulation of rDNA transcription initiation, elongation and rRNA processing is an immediate, co-regulated response to altered amino acid abundance, dependent on both mTORC1 activation of S6K1 and MYC activity. Growth factors regulate rDNA transcription initiation while amino acids modulate growth factor-dependent rDNA transcription by primarily regulating S6K1-dependent rDNA transcription elongation and processing. Thus, we show for the first time amino acids regulate rRNA synthesis by a distinct, post-initiation mechanism, providing a novel model for integrated control of ribosome biogenesis that has implications for understanding how this process is dysregulated in cancer.


Asunto(s)
Aminoácidos/química , ADN Ribosómico/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Nucléolo Celular/metabolismo , ADN Ribosómico/química , Genes Dominantes , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/metabolismo , Oncogenes , ARN Interferente Pequeño/metabolismo , Ratas , Ribosomas/metabolismo , Transducción de Señal , Transcripción Genética
11.
J Cell Biol ; 209(5): 687-703, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26056139

RESUMEN

Newly synthesized membrane proteins are constantly sorted from the endoplasmic reticulum (ER) to various membranous compartments. How proteins specifically enrich at the inner nuclear membrane (INM) is not well understood. We have established a visual in vitro assay to measure kinetics and investigate requirements of protein targeting to the INM. Using human LBR, SUN2, and LAP2ß as model substrates, we show that INM targeting is energy-dependent but distinct from import of soluble cargo. Accumulation of proteins at the INM relies on both a highly interconnected ER network, which is affected by energy depletion, and an efficient immobilization step at the INM. Nucleoporin depletions suggest that translocation through nuclear pore complexes (NPCs) is rate-limiting and restricted by the central NPC scaffold. Our experimental data combined with mathematical modeling support a diffusion-retention-based mechanism of INM targeting. We experimentally confirmed the sufficiency of diffusion and retention using an artificial reporter lacking natural sorting signals that recapitulates the energy dependence of the process in vivo.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Modelos Biológicos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptor de Lamina B
12.
FEBS Lett ; 588(20): 3685-91, 2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25150171

RESUMEN

BRCA2 and CDKN1A(p21,CIP1)-interacting protein (BCCIP) is an evolutionary conserved protein implicated in maintenance of genome stability and cell cycle progression. Two isoforms of BCCIP with distinct C-terminal domains exist in humans. We show that mammalian BCCIPß, but not BCCIPα, forms a ternary complex with the ribosomal protein RPL23/uL14 and the pre-60S trans-acting factor eIF6. Complex formation is dependent on an intact C-terminal domain of BCCIPß. Depletion of BCCIPß reduces the pool of free RPL23, and decreases eIF6 levels in nucleoli. Overexpression of BCCIPß leads to nucleoplasmic accumulation of extra-ribosomal RPL23 and stabilizes overexpressed RPL23, suggesting that BCCIPß functions as nuclear chaperone for RPL23.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Transporte Activo de Núcleo Celular , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Humanos , Unión Proteica , Isoformas de Proteínas/metabolismo , Estabilidad Proteica
13.
Methods Cell Biol ; 122: 255-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24857734

RESUMEN

During mitosis in vertebrate cells, the nuclear compartment is completely disintegrated in the process of nuclear envelope breakdown (NEBD). NEBD comprises the disassembly of nuclear pore complexes, disintegration of the nuclear lamina, and the retraction of nuclear membranes into the endoplasmic reticulum. Deciphering of the mechanisms that underlie these dynamic changes requires the identification of the involved molecular components and appropriate experimental tools to define their mode of action. Here, we describe an in vitro, imaging-based experimental system, which recapitulates NEBD. In our assay, we induce NEBD on nuclei of semi-permeabilized HeLa cells expressing fluorescently tagged nuclear envelope (NE) marker proteins by addition of mitotic cell extract that is supplemented with fluorescently labeled dextran. Time-lapse confocal microscopy is used to monitor the fate of the selected NE marker protein, and loss of the NE permeability barrier is deduced by influx of the fluorescent dextran into the nucleus. This in vitro system provides a powerful tool to follow NEBD and to characterize factors required for the reorganization of the NE during mitosis.


Asunto(s)
Microscopía Confocal/métodos , Membrana Nuclear/metabolismo , Línea Celular Tumoral , Dextranos/química , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Técnicas In Vitro , Mitosis , Proteínas de Complejo Poro Nuclear/metabolismo
14.
PLoS One ; 9(4): e93431, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24691067

RESUMEN

Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Glioma/metabolismo , Actinas/antagonistas & inhibidores , Actinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Centrosoma/metabolismo , Dineínas/antagonistas & inhibidores , Dineínas/metabolismo , Glioma/patología , Humanos , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Miosina Tipo II/metabolismo , Ratas
15.
J Cell Biol ; 198(5): 847-63, 2012 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-22945934

RESUMEN

Chromokinesins are microtubule plus end-directed motor proteins that bind to chromosome arms. In Xenopus egg cell-free extracts, Xkid and Xklp1 are essential for bipolar spindle formation but the functions of the human homologues, hKID (KIF22) and KIF4A, are poorly understood. By using RNAi-mediated protein knockdown in human cells, we find that only co-depletion delayed progression through mitosis in a Mad2-dependent manner. Depletion of hKID caused abnormal chromosome arm orientation, delayed chromosome congression, and sensitized cells to nocodazole. Knockdown of KIF4A increased the number and length of microtubules, altered kinetochore oscillations, and decreased kinetochore microtubule flux. These changes were associated with failures in establishing a tight metaphase plate and an increase in anaphase lagging chromosomes. Co-depletion of both chromokinesins aggravated chromosome attachment failures, which led to mitotic arrest. Thus, hKID and KIF4A contribute independently to the rapid and correct attachment of chromosomes by controlling the positioning of chromosome arms and the dynamics of microtubules, respectively.


Asunto(s)
Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/metabolismo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Huso Acromático/metabolismo , Anafase/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas Mad2 , Metafase/fisiología , Proteínas Represoras/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo
16.
Cell ; 149(5): 1035-47, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22632968

RESUMEN

Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.


Asunto(s)
Cristalografía por Rayos X , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Proteínas de Microfilamentos/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Proteínas del Citoesqueleto , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas/química , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia
18.
J Biol Chem ; 282(27): 19928-37, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17430889

RESUMEN

Purine nucleotide-binding proteins build the large family of P-loop GTPases and related ATPases, which perform essential functions in all kingdoms of life. The Obg family comprises a group of ancient GTPases belonging to the TRAFAC (for translation factors) class and can be subdivided into several distinct protein subfamilies. The founding member of one of these subfamilies is the bacterial P-loop NTPase YchF, which had so far been assumed to act as GTPase. We have biochemically characterized the human homologue of YchF and found that it binds and hydrolyzes ATP more efficiently than GTP. For this reason, we have termed the protein hOLA1, for human Obg-like ATPase 1. Further biochemical characterization of YchF proteins from different species revealed that ATPase activity is a general but previously missed feature of the YchF subfamily of Obg-like GTPases. To explain ATP specificity of hOLA1, we have solved the x-ray structure of hOLA1 bound to the nonhydrolyzable ATP analogue AMPPCP. Our structural data help to explain the altered nucleotide specificity of YchF homologues and identify the Ola1/YchF subfamily of the Obg-related NTPases as an exceptional example of a single protein subfamily, which has evolved altered nucleotide specificity within a distinct protein family of GTPases.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Evolución Molecular , Proteínas de Unión al GTP/química , Guanosina Trifosfato/química , Proteínas de Unión al GTP Monoméricas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Estructura Terciaria de Proteína , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Especificidad por Sustrato
19.
Mol Cell ; 22(1): 93-103, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16600873

RESUMEN

Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in the nuclear envelope (NE), through which exchange of molecules between the nucleus and cytosol occurs. Biogenesis of NPCs is complex and poorly understood. In particular, almost nothing is known about how NPCs are anchored in the NE. Here, we characterize vertebrate NDC1--a transmembrane nucleoporin conserved between yeast and metazoans. We show by RNA interference (RNAi) and biochemical depletion that NDC1 plays an important role in NPC and NE assembly in vivo and in vitro. RNAi experiments suggest a functional link between NDC1 and the soluble nucleoporins Nup93, Nup53, and Nup205. Importantly, NDC1 interacts with Nup53 in vitro. This suggests that NDC1 function involves forming a link between the NE membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Clonación Molecular , Secuencia Conservada , Células HeLa , Humanos , Datos de Secuencia Molecular , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Osteosarcoma/metabolismo , Fragmentos de Péptidos/inmunología , Proteolípidos , ARN Interferente Pequeño/farmacología , Conejos , Homología de Secuencia de Aminoácido , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
20.
Proc Natl Acad Sci U S A ; 101(9): 2918-23, 2004 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-14981248

RESUMEN

The RanGTP-binding nuclear transport receptors transportin1 (TRN1) and transportin2 (TRN2) are highly similar in sequence but are reported to function in nuclear import and export, respectively. Here we show that TRN2 possesses properties of a nuclear import receptor. TRN1/2 both interacted with a similar set of RNA-binding proteins in a RanGTP-sensitive manner. TRN2 bound RanGTP with high affinity, a feature of nuclear import receptors. As expected of an import complex, RanGTP also disrupted the interaction between TRN2 and HuR, an RNA-binding protein previously described as a TRN2 export substrate. The HuR nucleocytoplasmic shuttling signal, a sequence resembling the M9 nuclear import signal of hnRNP A1, was necessary and sufficient for TRN-mediated nuclear import of HuR in vitro. Finally, crosscompetition experiments demonstrated that HuR nucleocytoplasmic shuttling signal and M9 are imported along redundant pathways involving TRN1/2, substantiating the function of TRN2 in nuclear import.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , beta Carioferinas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/química , Núcleo Celular/metabolismo , Clonación Molecular , ADN Complementario/genética , Proteínas ELAV , Proteína 1 Similar a ELAV , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas de Unión a Poli(A)/metabolismo , Transporte de Proteínas , Conejos , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Factor A de Crecimiento Endotelial Vascular/metabolismo , beta Carioferinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA