Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(4): 200875, 2024 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-39351074

RESUMEN

Alternative splicing products of AIMP2 and AIMP2-DX2 (DX2) have been reported to be associated with human lung cancer. In fact, DX2 expression is elevated in human lung cancers, and DX2 transgenic mice also develop lung cancer, in particular small cell lung cancer (SCLC). However, the mechanism by which DX2 is induced during cancer progression has not been clearly elucidated. Here, we show that DX2 is induced by nicotine, the main component of smoking-related chemicals, which can stabilize the human epidermal growth factor receptor 2 (HER2) protein and transcriptionally increase sonic hedgehog (Shh). Indeed, nicotine showed tumorigenicity via DX2 by promoting spheroid formation and in vivo lung and kidney cancer progression. Moreover, the elimination of DX2 using small interfering RNA (siRNA) or an optimized inhibitor (SNU-14) blocked the induction of HER2 and Shh and completely suppressed tumor sphere formation in response to nicotine. These results indicate that DX2 is critical for lung cancer progression, and a specific DX2 inhibitor would be useful for the treatment of human cancers, including SCLC and non-SCLC (NSCLC).

2.
ACS Chem Biol ; 18(2): 265-272, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36693003

RESUMEN

Micrococcin P1 and P2 are thiopeptides with a wide range of biological functions including antibacterial and antimalarial activities. We previously demonstrated optimized enzymatic sequences for the exclusive and scalable biosynthesis of micrococcin P2. Thiocillin IV is predicted to be the congener of O-methylated micrococcin P2, but the exact structure has not been elucidated. In this study, we report the first scalable biosynthesis and full structural characterization of thiocillin IV, a 26-membered thiopeptide. This was achieved by generating a recombinant plasmid by inserting tclO, a gene encoding an O-methyltransferase, and genes responsible for micrococcin P2 production and incorporating them into a Bacillus strain. With the incorporation of precursor peptide genes and optimal culture conditions, production reached 2.4 mg/L of culture. The purified thiocillin IV structure was identified as O-methylated micrococcin P2 at the 8-Thr position, and its promising biological activity toward various Gram-positive pathogens was observed. This study provides tclO-mediated site-selective methylation and opens a biotechnological opportunity to produce selective thiopeptides.


Asunto(s)
Bacillus , Péptidos , Péptidos/química , Antibacterianos/química , Bacillus/metabolismo
3.
Nature ; 611(7934): 173-179, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36289326

RESUMEN

G-protein-coupled receptors (GPCRs), the largest family of signalling receptors, as well as important drug targets, are known to activate extracellular-signal-regulated kinase (ERK)-a master regulator of cell proliferation and survival1. However, the precise mechanisms that underlie GPCR-mediated ERK activation are not clearly understood2-4. Here we investigated how spatially organized ß2-adrenergic receptor (ß2AR) signalling controls ERK. Using subcellularly targeted ERK activity biosensors5, we show that ß2AR signalling induces ERK activity at endosomes, but not at the plasma membrane. This pool of ERK activity depends on active, endosome-localized Gαs and requires ligand-stimulated ß2AR endocytosis. We further identify an endosomally localized non-canonical signalling axis comprising Gαs, RAF and mitogen-activated protein kinase kinase, resulting in endosomal ERK activity that propagates into the nucleus. Selective inhibition of endosomal ß2AR and Gαs signalling blunted nuclear ERK activity, MYC gene expression and cell proliferation. These results reveal a non-canonical mechanism for the spatial regulation of ERK through GPCR signalling and identify a functionally important endosomal signalling axis.


Asunto(s)
Adrenérgicos , Endosomas , Quinasas MAP Reguladas por Señal Extracelular , Receptores Adrenérgicos beta 2 , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Proliferación Celular , Endosomas/efectos de los fármacos , Endosomas/enzimología , Endosomas/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Genes myc , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
4.
Commun Biol ; 5(1): 1085, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224351

RESUMEN

Eukaryotic Cu, Zn-superoxide dismutase (SOD1) is primarily responsible for cytotoxic filament formation in amyotrophic lateral sclerosis (ALS) neurons. Two cysteine residues in SOD1 form an intramolecular disulfide bond. This study aims to explore the molecular mechanism of SOD1 filament formation by cysteine overoxidation in sporadic ALS (sALS). In this study, we determined the crystal structure of the double mutant (C57D/C146D) SOD1 that mimics the overoxidation of the disulfide-forming cysteine residues. The structure revealed the open and relaxed conformation of loop IV containing the mutated Asp57. The double mutant SOD1 produced more contagious filaments than wild-type protein, promoting filament formation of the wild-type SOD1 proteins. Importantly, we further found that HOCl treatment to the wild-type SOD1 proteins facilitated their filament formation. We propose a feasible mechanism for SOD1 filament formation in ALS from the wild-type SOD1, suggesting that overoxidized SOD1 is a triggering factor of sALS. Our findings extend our understanding of other neurodegenerative disorders associated with ROS stresses at the molecular level.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Cisteína , Disulfuros/química , Humanos , Mutación , Especies Reactivas de Oxígeno , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/química , Zinc/metabolismo
5.
Mol Cancer Res ; 20(3): 412-424, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728553

RESUMEN

Loss of NF2 (merlin) has been suggested as a genetic cause of neurofibromatosis type 2 and malignant peripheral nerve sheath tumor (MPNST). Previously, we demonstrated that NF2 sustained TGFß receptor 2 (TßR2) expression and reduction or loss of NF2 activated non-canonical TGFß signaling, which reduced Raf kinase inhibitor protein (RKIP) expression via TßR1 kinase activity. Here, we show that a selective RKIP inducer (novel chemical, Nf18001) inhibits tumor growth and promotes schwannoma cell differentiation into mature Schwann cells under NF2-deficient conditions. In addition, Nf18001 is not cytotoxic to cells expressing NF2 and is not disturb canonical TGFß signaling. Moreover, the novel chemical induces expression of SOX10, a marker of differentiated Schwann cells, and promotes nuclear export and degradation of SOX2, a stem cell factor. Treatment with Nf18001 inhibited tumor growth in an allograft model with mouse schwannoma cells. These results strongly suggest that selective RKIP inducers could be useful for the treatment of neurofibromatosis type 2 as well as NF2-deficient MPNST. IMPLICATIONS: This study identifies that a selective RKIP inducer inhibits tumor growth and promotes schwannoma cell differentiation under NF2-deficient conditions by reducing SOX2 and increasing SOX10 expression.


Asunto(s)
Neurilemoma , Neurofibromatosis 2 , Neurofibrosarcoma , Animales , Diferenciación Celular , Humanos , Ratones , Neurilemoma/genética , Neurilemoma/metabolismo , Neurilemoma/patología , Neurofibromatosis 2/genética , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
6.
Commun Biol ; 4(1): 1397, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34912047

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu, Zn-superoxide dismutase (SOD1) causing the gain of its toxic property are the major culprit of familial ALS (fALS). The abnormal SOD1 aggregation in the motor neurons has been suggested as the major pathological hallmark of ALS patients. However, the development of pharmacological interventions against SOD1 still needs further investigation. In this study, using ELISA-based chemical screening with wild and mutant SOD1 proteins, we screened a new small molecule, PRG-A01, which could block the misfolding/aggregation of SOD1 or TDP-43. The drug rescued the cell death induced by mutant SOD1 in human neuroblastoma cell line. Administration of PRG-A01 into the ALS model mouse resulted in significant improvement of muscle strength, motor neuron viability and mobility with extended lifespan. These results suggest that SOD1 misfolding/aggregation is a potent therapeutic target for SOD1 related ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/fisiología , Degeneración Nerviosa/fisiopatología , Pliegue de Proteína , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Modelos Animales de Enfermedad , Mutación , Degeneración Nerviosa/genética , Superóxido Dismutasa-1/metabolismo
7.
Sci Adv ; 7(21)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34020947

RESUMEN

Growing evidence suggests that many essential intracellular signaling events are compartmentalized within kinetically distinct microdomains in cells. Genetically encoded fluorescent biosensors are powerful tools to dissect compartmentalized signaling, but current approaches to probe these microdomains typically rely on biosensor fusion and overexpression of critical regulatory elements. Here, we present a novel class of biosensors named FluoSTEPs (fluorescent sensors targeted to endogenous proteins) that combine self-complementing split green fluorescent protein, CRISPR-mediated knock-in, and fluorescence resonance energy transfer biosensor technology to probe compartmentalized signaling dynamics in situ. We designed FluoSTEPs for simultaneously highlighting endogenous microdomains and reporting domain-specific, real-time signaling events including kinase activities, guanosine triphosphatase activation, and second messenger dynamics in live cells. A FluoSTEP for 3',5'-cyclic adenosine monophosphate (cAMP) revealed distinct cAMP dynamics within clathrin microdomains in response to stimulation of G protein-coupled receptors, showcasing the utility of FluoSTEPs in probing spatiotemporal regulation within endogenous signaling architectures.


Asunto(s)
Técnicas Biosensibles , AMP Cíclico , Colorantes , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Transducción de Señal
8.
Exp Mol Med ; 53(3): 384-392, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33654221

RESUMEN

Single-molecule localization microscopy (SMLM) has allowed the observation of various molecular structures in cells beyond the diffraction limit using organic dyes. In principle, the SMLM resolution depends on the precision of photoswitching fluorophore localization, which is inversely correlated with the square root of the number of photons released from the individual fluorophores. Thus, increasing the photon number by using highly bright fluorophores, such as quantum dots (QDs), can theoretically fundamentally overcome the current resolution limit of SMLM. However, the use of QDs in SMLM has been challenging because QDs have no photoswitching property, which is essential for SMLM, and they exhibit nonspecificity and multivalency, which complicate their use in fluorescence imaging. Here, we present a method to utilize QDs in SMLM to surpass the resolution limit of the current SMLM utilizing organic dyes. We confer monovalency, specificity, and photoswitchability on QDs by steric exclusion via passivation and ligand exchange with ptDNA, PEG, and casein as well as by DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) via automatic thermally driven hybridization between target-bound docking and dye-bound complementary imager strands. QDs are made monovalent and photoswitchable to enable SMLM and show substantially better photophysical properties than Cy3, with higher fluorescence intensity and an improved resolution factor. QD-PAINT displays improved spatial resolution with a narrower full width at half maximum (FWHM) than DNA-PAINT with Cy3. In summary, QD-PAINT shows great promise as a next-generation SMLM method for overcoming the limited resolution of the current SMLM.


Asunto(s)
ADN/análisis , Receptores ErbB/metabolismo , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Sondas Moleculares/química , Puntos Cuánticos , Imagen Individual de Molécula/métodos , Animales , Células CHO , Cricetulus , Imagen Óptica , Procesos Fotoquímicos
9.
Exp Ther Med ; 21(5): 420, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33747160

RESUMEN

Fibrillar collagen and elastic fibers are the main components of the dermal extracellular matrix (ECM), which confers mechanical strength and resilience to the skin. In particular, type I collagen produced by fibroblasts is the most abundant collagen that determines the general strength of the ECM, thereby contributing to the prevesntion of the skin-aging process. Although the natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone) exerts numerous beneficial effects, including antiviral, anticancer, anti-inflammatory and wound-healing effects in diverse cells, the effect of emodin on collagen expression or skin aging is not fully understood. The present study demonstrated that exposure to emodin increased type I collagen synthesis in a concentration- and time-dependent manner in Hs27 human dermal fibroblasts. Subsequent experiments showed that emodin strongly increased collagen type I levels without altering cell proliferation or cellular matrix metalloproteinase-1 (MMP-1) expression. Additionally, it was determined that increased phosphorylation of 5' AMP-activated protein kinase, following emodin treatment, was responsible for increased type I collagen synthesis. These findings clearly indicate that emodin plays an important role in collagen type I synthesis in dermal fibroblasts, thereby making it a potential drug candidate for treating skin aging and wrinkles.

10.
Exp Mol Med ; 53(2): 291-299, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33603128

RESUMEN

Various repertoires of membrane protein interactions determine cellular responses to diverse environments around cells dynamically in space and time. Current assays, however, have limitations in unraveling these interactions in the physiological states in a living cell due to the lack of capability to probe the transient nature of these interactions on the crowded membrane. Here, we present a simple and robust assay that enables the investigation of transient protein interactions in living cells by using the single-molecule diffusional mobility shift assay (smDIMSA). Utilizing smDIMSA, we uncovered the interaction profile of EGFR with various membrane proteins and demonstrated the promiscuity of these interactions depending on the cancer cell line. The transient interaction profile obtained by smDIMSA will provide critical information to comprehend the crosstalk among various receptors on the plasma membrane.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Mapeo de Interacción de Proteínas/métodos , Animales , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Línea Celular , Ensayo de Cambio de Movilidad Electroforética/métodos , Técnica del Anticuerpo Fluorescente , Humanos , Imagen Molecular , Unión Proteica , Reproducibilidad de los Resultados , Imagen Individual de Molécula
11.
PLoS Biol ; 16(12): e2006660, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30543635

RESUMEN

Interactions between membrane proteins are poorly understood despite their importance in cell signaling and drug development. Here, we present a co-immunoimmobilization assay (Co-II) enabling the direct observation of membrane protein interactions in single living cells that overcomes the limitations of currently prevalent proximity-based indirect methods. Using Co-II, we investigated the transient homodimerizations of epidermal growth factor receptor (EGFR) and beta-2 adrenergic receptor (ß2-AR) in living cells, revealing the differential regulation of these receptors' dimerizations by molecular conformations and microenvironment in a plasma membrane. Co-II should provide a simple, rapid, and robust platform for visualizing both weak and strong protein interactions in the plasma membrane of living cells.


Asunto(s)
Inmunoprecipitación/métodos , Mapeo de Interacción de Proteínas/métodos , Análisis de la Célula Individual/métodos , Línea Celular , Membrana Celular/metabolismo , Receptores ErbB/fisiología , Humanos , Proteínas de la Membrana/fisiología , Unión Proteica/fisiología , Receptores Adrenérgicos beta 2/fisiología , Transducción de Señal
12.
Chem Sci ; 8(7): 4823-4832, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28959404

RESUMEN

Cellular processes occur through the orchestration of multi-step molecular reactions. Reaction progress kinetic analysis (RPKA) can provide the mechanistic details to elucidate the multi-step molecular reactions. However, current tools have limited ability to simultaneously monitor dynamic variations in multiple complex states at the single molecule level to apply RPKA in living cells. In this research, a single particle tracking-based reaction progress kinetic analysis (sptRPKA) was developed to simultaneously determine the kinetics of multiple states of protein complexes in the membrane of a single living cell. The subpopulation ratios of different states were quantitatively (and statistically) reliably extracted from the diffusion coefficient distribution rapidly acquired by single particle tracking at constant and high density over a long period of time using super-resolution microscopy. Using sptRPKA, a series of molecular mechanisms of epidermal growth factor receptor (EGFR) cellular processing induced by cetuximab were investigated. By comprehensively measuring the rate constants and cooperativity of the molecular reactions involving four EGFR complex states, a previously unknown intermediate state was identified that represents the rate limiting step responsible for the selectivity of cetuximab-induced EGFR endocytosis to cancer cells.

13.
Angew Chem Int Ed Engl ; 54(24): 7028-32, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25940988

RESUMEN

We present a single-molecule diffusional-mobility-shift assay (smDIMSA) for analyzing the interactions between membrane and water-soluble proteins in the crowded membrane of living cells. We found that ligand-receptor interactions decreased the diffusional mobility of ErbB receptors and ß-adrenergic receptors, as determined by single-particle tracking with super-resolution microscopy. The shift in diffusional mobility was sensitive to the size of the water-soluble binders that ranged from a few tens of kilodaltons to several hundred kilodaltons. This technique was used to quantitatively analyze the dissociation constant and the cooperativity of antibody interactions with the epidermal growth factor receptor and its mutants. smDIMSA enables the quantitative investigation of previously undetected ligand-receptor interactions in the intact membrane of living cells on the basis of the diffusivity of single-molecule membrane proteins without ligand labeling.


Asunto(s)
Receptores ErbB/metabolismo , Ligandos , Animales , Anticuerpos Monoclonales/inmunología , Células COS , Membrana Celular/metabolismo , Cetuximab/inmunología , Chlorocebus aethiops , Difusión , Receptores ErbB/química , Receptores ErbB/genética , Microscopía , Mutación
14.
Diabetologia ; 57(7): 1456-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24744121

RESUMEN

AIMS/HYPOTHESIS: Obesity-induced inflammation is initiated by the recruitment of macrophages into adipose tissue. The recruited macrophages, called adipose tissue macrophages, secrete several proinflammatory cytokines that cause low-grade systemic inflammation and insulin resistance. The aim of this study was to find macrophage-recruiting factors that are thought to provide a crucial connection between obesity and insulin resistance. METHODS: We used chemotaxis assay, reverse phase HPLC and tandem MS analysis to find chemotactic factors from adipocytes. The expression of chemokines and macrophage markers was evaluated by quantitative RT-PCR, immunohistochemistry and FACS analysis. RESULTS: We report our finding that the chemokine (C-X-C motif) ligand 12 (CXCL12, also known as stromal cell-derived factor 1), identified from 3T3-L1 adipocyte conditioned medium, induces monocyte migration via its receptor chemokine (C-X-C motif) receptor 4 (CXCR4). Diet-induced obese mice demonstrated a robust increase of CXCL12 expression in white adipose tissue (WAT). Treatment of obese mice with a CXCR4 antagonist reduced macrophage accumulation and production of proinflammatory cytokines in WAT, and improved systemic insulin sensitivity. CONCLUSIONS/INTERPRETATION: In this study we found that CXCL12 is an adipocyte-derived chemotactic factor that recruits macrophages, and that it is a required factor for the establishment of obesity-induced adipose tissue inflammation and systemic insulin resistance.


Asunto(s)
Tejido Adiposo/metabolismo , Quimiocina CXCL12/metabolismo , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Línea Celular , Quimiotaxis/fisiología , Ratones , Obesidad/metabolismo
15.
Lasers Surg Med ; 39(5): 441-50, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17523169

RESUMEN

BACKGROUND AND OBJECTIVES: This experiment using an animal experimental model was conducted in order to investigate the effect of low-level laser therapy (LLLT) on the healing of the dental titanium implant. STUDY DESIGN/MATERIALS AND METHODS: The experimental group received LLLT for a week and the control group did not. Each group consisted of 10 rats. Two rats from the groups were euthenized on the days 1, 3, 7, 14, and 21 of the experiment. The expression of receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), and receptor activator of nuclear factor kB (RANK) were investigated. RESULTS: The expression of RANKL was observed from the initial stage of the installation of the implant for both the experimental and control groups. However, the degree of expression was higher in the experimental group. The degree of expression of OPG increased remarkably in the experimental group, while in the control group the degree of expression increased only slightly. In the experimental group, the expression of RANK was observed from the first day, but in the control group, it was weakly observed after day 3. The overall expression within the bone was slight on day 7 in the control group, while an active expression was observed in the experimental group. Bone density after installation of dental titanium implant during osseointegration in the experimental group was higher than the control group. The surface and structure of the titanium implant was not damaged by low-level laser (LLL). CONCLUSIONS: From the above results, the expression of OPG, RANKL, and RANK during the osseointegration of the dental titanium implant was observed within bone tissue. The application of the LLL influenced the expression of OPG, RANKL, and RANK, and resulted in the expansion of metabolic bone activity and increased the activity of bone tissue cells.


Asunto(s)
Implantes Dentales , Terapia por Luz de Baja Intensidad , Oseointegración , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Animales , Densidad Ósea , Implantación Dental , Inmunohistoquímica , Microscopía Electrónica de Rastreo , Modelos Animales , Ratas , Ratas Sprague-Dawley , Tibia/metabolismo , Tibia/cirugía , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA