Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hepatol ; 62(1): 101-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25135862

RESUMEN

BACKGROUND & AIMS: Current hepatic differentiation protocols for human embryonic stem cells (ESCs) require substantial improvements. MicroRNAs (miRNAs) have been reported to regulate hepatocyte cell fate during liver development, but their utility to improve hepatocyte differentiation from ESCs remains to be investigated. Therefore, our aim was to identify and to analyse hepatogenic miRNAs for their potential to improve hepatocyte differentiation from ESCs. METHODS: By miRNA profiling and in vitro screening, we identified miR-199a-5p among several potential hepatogenic miRNAs. Transplantation studies of miR-199a-5p-inhibited hepatocyte-like cells (HLCs) in the liver of immunodeficient fumarylacetoacetate hydrolase knockout mice (Fah(-/-)/Rag2(-/-)/Il2rg(-/-)) were performed to assess their in vivo liver repopulation potential. For target determination, western blot and luciferase reporter assay were carried out. RESULTS: miRNA profiling revealed 20 conserved candidate hepatogenic miRNAs. By miRNA screening, only miR-199a-5p inhibition in HLCs was found to be able to enhance the in vitro hepatic differentiation of mouse as well as human ESCs. miR-199a-5p inhibition in human ESCs-derived HLCs enhanced their engraftment and repopulation capacity in the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Furthermore, we identified SMARCA4 and MST1 as novel targets of miR-199a-5p that may contribute to the improved hepatocyte generation and in vivo liver repopulation. CONCLUSIONS: Our findings demonstrate that miR-199a-5p inhibition in ES-derived HLCs leads to improved hepatocyte differentiation. Upon transplantation, HLCs were able to engraft and repopulate the liver of Fah(-/-)/Rag2(-/-)/Il2rg(-/-) mice. Thus, our findings suggest that miRNA modulation may serve as a promising approach to generate more mature HLCs from stem cell sources for the treatment of liver diseases.


Asunto(s)
Regulación de la Expresión Génica , Hepatocitos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Trasplante de Hígado , MicroARNs/genética , ARN/genética , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Hepatocitos/citología , Células Madre Embrionarias Humanas/citología , Humanos , Ratones , Ratones Noqueados , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
PLoS Genet ; 9(1): e1003189, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23341776

RESUMEN

Vertebrate organ development relies on the precise spatiotemporal orchestration of proliferation rates and differentiation patterns in adjacent tissue compartments. The underlying integration of patterning and cell cycle control during organogenesis is insufficiently understood. Here, we have investigated the function of the patterning T-box transcription factor gene Tbx2 in lung development. We show that lungs of Tbx2-deficient mice are markedly hypoplastic and exhibit reduced branching morphogenesis. Mesenchymal proliferation was severely decreased, while mesenchymal differentiation into fibrocytes was prematurely induced. In the epithelial compartment, proliferation was reduced and differentiation of alveolar epithelial cells type 1 was compromised. Prior to the observed cellular changes, canonical Wnt signaling was downregulated, and Cdkn1a (p21) and Cdkn1b (p27) (two members of the Cip/Kip family of cell cycle inhibitors) were strongly induced in the Tbx2-deficient lung mesenchyme. Deletion of both Cdkn1a and Cdkn1b rescued, to a large degree, the growth deficits of Tbx2-deficient lungs. Prolongation of Tbx2 expression into adulthood led to hyperproliferation and maintenance of mesenchymal progenitor cells, with branching morphogenesis remaining unaffected. Expression of Cdkn1a and Cdkn1b was ablated from the lung mesenchyme in this gain-of-function setting. We further show by ChIP experiments that Tbx2 directly binds to Cdkn1a and Cdkn1b loci in vivo, defining these two genes as direct targets of Tbx2 repressive activity in the lung mesenchyme. We conclude that Tbx2-mediated regulation of Cdkn1a and Cdkn1b represents a crucial node in the network integrating patterning information and cell cycle regulation that underlies growth, differentiation, and branching morphogenesis of this organ.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Pulmón , Proteínas de Dominio T Box , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Mesodermo , Ratones , Morfogénesis , Transducción de Señal , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
3.
Circ Res ; 108(7): 813-23, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21252157

RESUMEN

RATIONALE: The embryonic epicardium plays a crucial role in the formation of the coronary vasculature and in myocardial development, yet the exact contribution of epicardium-derived cells (EPDCs) to the vascular and connective tissue of the heart, and the factors that regulate epicardial differentiation, are insufficiently understood. OBJECTIVE: To define the role of Notch signaling in murine epicardial development. METHODS AND RESULTS: Using in situ hybridization and RT-PCR analyses, we detected expression of a number of Notch receptor and ligand genes in early epicardial development, as well as during formation of coronary arteries. Mice with epicardial deletion of Rbpj, the unique intracellular mediator of Notch signaling, survived to adulthood and exhibited enlarged coronary venous and arterial beds. Using a Tbx18-based genetic lineage tracing system, we show that EPDCs give rise to fibroblasts and coronary smooth muscle cells (SMCs) but not to endothelial cells in the wild type, whereas in Rbpj-deficient embryos EPDCs form and surround the developing arteries but fail to differentiate into SMCs. Conditional activation of Notch signaling results in premature SMC differentiation of epicardial cells and prevents coronary angiogenesis. We further show that Notch signaling regulates, and cooperates with transforming growth factor ß signaling in SM differentiation of EPDCs. CONCLUSIONS: Notch signaling is a crucial regulator of SM differentiation of EPDCs, and thus, of formation of a functional coronary system.


Asunto(s)
Diferenciación Celular/fisiología , Miocitos del Músculo Liso/citología , Pericardio/citología , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Aterosclerosis/fisiopatología , Células Cultivadas , Vasos Coronarios/citología , Vasos Coronarios/fisiopatología , Femenino , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Pericardio/embriología , Pericardio/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptores Notch/genética , Factor de Crecimiento Transformador beta/fisiología
4.
Dev Biol ; 336(2): 145-55, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19769959

RESUMEN

Formation of the mammalian secondary palate is a highly regulated and complex process. Impairment of the underlying cellular and molecular programs often results in cleft palate, a common birth defect in mammals. Here we report that Tbx2 and Tbx3, two closely related genes encoding T-box transcription factors, are expressed in the mesenchyme of the mouse palatal structures during development. Mice homozygous mutant for Tbx2 and mice double heterozygous for Tbx2 and Tbx3 exhibit a cleft palate phenotype arguing for an important contribution of Tbx2 and Tbx3 to palatogenesis. In Tbx2-deficient embryos, the bilateral primordial palatal shelves form but are smaller and retarded in the outgrowth process. They do not make contact but retain the potential to fuse. Development of other craniofacial structures appears normal, suggesting that impaired palate formation in Tbx2-mutant mice is caused by a primary defect in the palatal shelf mesenchyme. This is further supported by increased cell proliferation and apoptosis accompanied by increased expression of Bmp4 and CyclinD1 in Tbx2-deficient palatal shelves. Hence, Tbx2 and Tbx3 function overlappingly to control growth of the palatal shelf mesenchyme.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hueso Paladar/embriología , Proteínas de Dominio T Box/genética , Animales , Proteína Morfogenética Ósea 4/genética , Ciclina D1/genética , Hibridación in Situ , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box/fisiología
5.
Hepatology ; 49(3): 969-78, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19140222

RESUMEN

UNLABELLED: After specification of the hepatic endoderm, mammalian liver organogenesis progresses through a series of morphological stages that culminate in the migration of hepatocytes into the underlying mesenchyme to populate the hepatic lobes. Here, we show that in the mouse the transcriptional repressor Tbx3, a member of the T-box protein family, is required for the transition from a hepatic diverticulum with a pseudo-stratified epithelium to a cell-emergent liver bud. In Tbx3-deficient embryos, proliferation in the hepatic epithelium is severely reduced, hepatoblasts fail to delaminate, and cholangiocyte rather than hepatocyte differentiation occurs. Molecular analyses suggest that the primary function of Tbx3 is to maintain expression of hepatocyte transcription factors, including hepatic nuclear factor 4a (Hnf4a) and CCAAT/enhancer binding protein (C/EBP), alpha (Cebpa), and to repress expression of cholangiocyte transcription factors such as Onecut1 (Hnf6) and Hnf1b. CONCLUSION: Tbx3 controls liver bud expansion by suppressing cholangiocyte and favoring hepatocyte differentiation in the liver bud.


Asunto(s)
Conductos Biliares Extrahepáticos/embriología , Diferenciación Celular/fisiología , Células Epiteliales/citología , Hígado/embriología , Hígado/metabolismo , Organogénesis/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Conductos Biliares Extrahepáticos/citología , Conductos Biliares Extrahepáticos/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Células Epiteliales/metabolismo , Femenino , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 6 del Hepatocito/metabolismo , Hígado/citología , Ratones , Ratones Noqueados , Embarazo , Proteínas de Dominio T Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA