Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
Small ; 20(23): e2307464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212275

RESUMEN

The transplantation of immunoisolated stem cell derived beta cell clusters (SC-ß) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable ß-cell source without the need for systemic immune suppression. SC-ß cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-ß clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-ß cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-ß cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-ß cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-ß cells exhibited the least amount of fibrosis and enhanced markers of ß-cell maturation. The utilization of small SC-ß cell clusters within immunoprotection devices may improve clinical translation in the future.


Asunto(s)
Células Secretoras de Insulina , Animales , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental , Células Madre/citología , Células Madre/metabolismo , Diabetes Mellitus Tipo 1/terapia
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769095

RESUMEN

Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.


Asunto(s)
Alginatos/química , Quimiocina CXCL12/química , Factor 2 de Crecimiento de Fibroblastos/química , Heparina/química , Factor A de Crecimiento Endotelial Vascular/química , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microesferas , Ingeniería de Tejidos
3.
Langmuir ; 35(5): 1085-1099, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29792034

RESUMEN

Minimizing the foreign body reaction to polyimide-based implanted devices plays a pivotal role in several biomedical applications. In this work, we propose materials exhibiting nonbiofouling properties and a Young's modulus reflecting that of soft human tissues. We describe the synthesis, characterization, and in vitro validation of poly(carboxybetaine) hydrogel coatings covalently attached to polyimide substrates via a photolabile 4-azidophenyl group, incorporated in poly(carboxybetaine) chains at two concentrations of 1.6 and 3.1 mol %. The presence of coatings was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy. White light interferometry was used to evaluate the coating continuity and thickness (between 3 and 6 µm under dry conditions). Confocal laser scanning microscopy allowed us to quantify the thickness of the swollen hydrogel coatings that ranged between 13 and 32 µm. The different hydrogel formulations resulted in stiffness values ranging from 2 to 19 kPa and led to different fibroblast and macrophage responses in vitro. Both cell types showed a minimum adhesion on the softest hydrogel type. In addition, both the overall macrophage activation and cytotoxicity were observed to be negligible for all of the tested material formulations. These results are a promising starting point toward future advanced implantable systems. In particular, such technology paves the way for novel neural interfaces able to minimize the fibrotic reaction, once implanted in vivo, and to maximize their long-term stability and functionality.


Asunto(s)
Resinas Acrílicas/farmacología , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Fibroblastos/metabolismo , Hidrogeles/farmacología , Macrófagos/metabolismo , Resinas Acrílicas/síntesis química , Animales , Materiales Biocompatibles Revestidos/síntesis química , Módulo de Elasticidad , Humanos , Hidrogeles/síntesis química , Ratones , Células RAW 264.7
4.
J Colloid Interface Sci ; 500: 294-303, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28412637

RESUMEN

Simple and robust methods for modifying hydrophobic polymer surfaces with zwitterionic polymers using UV irradiation were developed. Two random zwitterionic copolymers consisting of either carboxybetaine or sulfobetaine methacrylamide monomers and monomers bearing a photolabile azidophenyl group were directly photoimmobilized on polymeric surfaces (polyester, polyethylene and polystyrene) via covalent interactions in a spatially controlled manner. These copolymers were also electrospun to form self-standing mats. The modified surfaces were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, infrared spectroscopy and contact angle measurements. The electrospinning method involved the use of a trifluoroethanol solution with a copolymer concentration in the range from 2 to 10wt.%. BHK 21 cell adhesion to both modified surfaces and mats was dramatically reduced compared to unmodified surfaces.


Asunto(s)
Acrilamidas/química , Betaína/análogos & derivados , Betaína/química , Materiales Biocompatibles/química , Adhesión Celular , Polímeros/química , Adsorción , Animales , Fibroblastos/fisiología , Mesocricetus , Ratones , Estructura Molecular , Procesos Fotoquímicos , Propiedades de Superficie
5.
J Enzyme Inhib Med Chem ; 31(sup1): 110-118, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27140748

RESUMEN

Encapsulation is a well-established method of biomaterial protection, controlled release, and efficient delivery. Here we evaluated encapsulation of monoclonal antibody M75 directed to tumor biomarker carbonic anhydrase IX (CA IX) into alginate microbeads (SA-beads) or microcapsules made of sodium alginate, cellulose sulfate, and poly(methylene-co-guanidine) (PMCG). M75 antibody release was quantified using ELISA and its binding properties were assessed by immunodetection methods. SA-beads showed rapid M75 antibody release in the first hour, followed by steady release during the whole experiment of 7 days. In contrast, the M75 release from PMCG capsules was gradual, reaching the maximum concentration on the 7th day. The release was more efficient at pH 6.8 compared to pH 7.4. The released antibody could recognize CA IX, and target the CA IX-positive cells in 3D spheroids. In conclusion, SA-beads and PMCG microcapsules can be considered as promising antibody reservoirs for targeting of cancer cells.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacocinética , Antígenos de Neoplasias/inmunología , Anhidrasa Carbónica IX/inmunología , Sistemas de Liberación de Medicamentos/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato , Microesferas , Neoplasias/metabolismo , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/administración & dosificación , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Anhidrasa Carbónica IX/metabolismo , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/patología , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
6.
Biomaterials ; 34(3): 621-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23103159

RESUMEN

The cytokine-inducing potential of various microspheres were evaluated in a short-time screening assay of lepirudin-anticoagulated human whole blood utilizing the Bio-Plex Human cytokine 27-plex system. The inflammatory cytokines IL-1ß, TNF and IL-6; the anti-inflammatory mediators IL-1ra and IL-10; the chemokines IL-8, MIP-1α and MCP-1; and the growth factor VEGF were induced by polycation (poly-l-lysine or poly(methylene-co-guanidine)) containing microspheres. Alginate microspheres without polycations did not induce the corresponding cytokine panel, nor did soluble alginate. By inhibiting complement C3 using compstatin analog CP20, a total inhibition of complement activation as well as the inflammatory mediators was achieved, indicating that complement activation alone was responsible for the induced cytokines. A strong deposition of C3c on the poly-l-lysine containing surface, while not on the microspheres lacking polycations, also points to the formation of C3 convertase as involved in the biomaterial-induced cytokine induction. These results show that complement is responsible for the induction of cytokines by polycation containing microspheres. We point to complement as an important initiator of inflammatory responses to biomaterials and the lepirudin anticoagulated whole blood assay as an important tool to identify the most tolerable and safe materials for implantation to humans.


Asunto(s)
Activación de Complemento , Citocinas/sangre , Citocinas/inmunología , Guanidinas/inmunología , Poliaminas/inmunología , Polilisina/inmunología , Alginatos/metabolismo , Materiales Biocompatibles/metabolismo , Quimiocina CCL3/sangre , Quimiocina CCL3/inmunología , Activación de Complemento/efectos de los fármacos , Complemento C3/antagonistas & inhibidores , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/inmunología , Proteína Antagonista del Receptor de Interleucina 1/sangre , Proteína Antagonista del Receptor de Interleucina 1/inmunología , Interleucina-10/sangre , Interleucina-10/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Interleucina-8/sangre , Interleucina-8/inmunología , Microesferas , Péptidos Cíclicos/farmacología , Polielectrolitos , Factores de Necrosis Tumoral/sangre , Factores de Necrosis Tumoral/inmunología , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/inmunología
7.
J Surg Res ; 168(1): e117-23, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21435661

RESUMEN

BACKGROUND: The anatomical spatial distribution of microencapsulated islets transplanted into the peritoneal cavity of large animals remains a relatively unexplored area of study. In this study, we developed a new implantation approach using laparoscopy in order to avoid microcapsule amalgamation. This approach constitutes a clinically relevant method, which can be used to evaluate the distribution and in vivo biocompatibility of various types of transplanted microcapsules in the future. MATERIALS AND METHODS: Two healthy baboons were implanted intraperitoneally with microencapsulated islets through mini-laparotomy and observed at 76 d after implantation. Nine baboons underwent laparoscopic implantation of approximately 80,000 empty microcapsules. Microcapsule distribution was observed by laparoscopic camera during and after implantation at 1, 2, and 4 wk. At each time point, microcapsules were retrieved and evaluated with brightfield microscopy and histologic analysis. RESULTS: Mini-laparotomic implantation resulted in microcapusle aggregation in both baboons. In contrast, laparoscopic implantation resulted in even distribution of microcapsules throughout the peritoneum without sedimentation to the Douglas space in all animals. In eight out of nine animals, retrieved microcapsules were evenly distributed in the peritoneal cavity and presented with no pericapsular overgrowth and easily washed out during laparoscopic procedure. The one exception was attributed to microcapsule contamination with blood from the abdominal wall following trocar insertion. CONCLUSIONS: Laparoscopic implantation of microcapsules in non-human primates can be successfully performed and prevents microcapsule aggregation. Given the current widespread clinical application of laparoscopy, we propose that this presented laparoscopy technique could be applied in future clinical trials of microencapsulated islet transplantation.


Asunto(s)
Cápsulas , Trasplante de Islotes Pancreáticos/métodos , Laparoscopía/métodos , Cavidad Peritoneal/cirugía , Animales , Femenino , Masculino , Modelos Animales , Papio anubis , Factores de Tiempo , Resultado del Tratamiento
8.
Cell Physiol Biochem ; 24(5-6): 441-50, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19910684

RESUMEN

UNLABELLED: Alcohol causes reactive hypoglycemia by attenuating the release of counter regulatory hormones, redistribution of pancreatic blood flow and direct stimulation of insulin secretion. Objective of this study was characterization of ethanol-induced insulin secretion. Signaling of ethanol- and glucose-induced insulin release from INS-1 and INS-1E cells was compared. Both cell lines responded similarly to all experimental interventions. In contrast to glucose, ethanol-induced insulin secretion was not hindered in calcium depleted medium or by addition of 10 microM BAPTA/AM (intracellular chelator). Inhibitor of protein kinase C Bisindolylmaleimide (3 microM) abolished glucose- but not ethanol-induced insulin secretion. Tetanus toxin (20 nM), inhibitor of SNARE proteins complex formation, blocked ethanol-induced insulin secretion. Both 5 mM N-ethylamaleimide and 10 microM ZnCl(2) (inhibitor of protein tyrosine phosphatases), which block disassembly of SNARE complexes and their further participation in exocytosis, increased basal insulin secretion. In contrast to glucose, already high insulin secretion was further increased after ethanol stimulation in either treatment. CONCLUSION: Signaling of ethanol-induced insulin secretion from INS-1 and INS-1E cell lines bypasses calcium and PKC involving steps, is sensitive to tetanus toxin but resistant to N-ethymaleimide and ZnCl(2). An extra pool of secretory vesicles not available for glucose is exploited for exocytosis after ethanol stimulation.


Asunto(s)
Etanol/farmacología , Insulina/metabolismo , Animales , Calcio/metabolismo , Línea Celular Tumoral , Cloruros/farmacología , Glucosa/farmacología , Indoles/farmacología , Secreción de Insulina , Maleimidas/farmacología , Proteína Quinasa C/metabolismo , Ratas , Proteínas SNARE/metabolismo , Toxina Tetánica/farmacología , Compuestos de Zinc/farmacología
9.
Macromol Biosci ; 7(5): 629-34, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17477445

RESUMEN

Chitosan/tripolyphosphate (CHIT/TPP) and chitosan/tripolyphosphate/chondroitin sulfate (CHIT/TPP/CHS) core-shell type microspheres were prepared by polyelectrolyte complexation in order to develop a biocompatible matrix for drug delivery. The continual method using a multi-loop reactor under sterile conditions was applied for microsphere preparation. All the types of microspheres produced were spherical in shape and had a porous structure. The mechanical resistance of the microspheres increased in the presence of CHS as the second polyanion, which toughened the microsphere shell structure. For a drug release application, the process of microsphere preparation was modified by dissolving ofloxacin (OFL), the fluoroquinolone antibiotic, in CHIT solution before complex formation. This study shows the difference in OFL release comparing the microspheres CHIT/TPP and CHIT/TPP/CHS and implies the potential to control this process.


Asunto(s)
Quitosano/química , Portadores de Fármacos , Hidrogeles/química , Microesferas , Sulfatos de Condroitina/química , Hidrogeles/metabolismo , Microscopía Confocal , Ofloxacino/química , Ofloxacino/metabolismo , Polifosfatos/química
10.
J Pharm Sci ; 96(1): 93-105, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16967440

RESUMEN

The usefulness of poly(N-isopropyl acrylamide), PNIPA, for preparing sustained release matrix or photopolymerization-coated cellulosic pellets was evaluated. Theophylline pellets and granules were prepared using powdered cellulose (PC), poly(vinylpyrrolidone) (PVP), and PNIPA of Mw approximately 330 kDa, Mn approximately 93 kDa and low critical solubility temperature approximately 32 degrees C. The low consistency of wet mass, evaluated by torsion rheometry, due to hydrophilic character of PNIPA at room temperature, favored extrusion-spheronization. Theophylline (20%) pellets prepared with 15% PNIPA, 20% PVP and 45% PC, and granules obtained using 40% PNIPA and 40% PC showed an enhanced, although limited, ability to sustain the release. This effect was notably promoted after compression (which provides slowly eroding tablets) or coating of individualized pellets. A new coating technique consisting in forming the polymer film by photo-polymerization/cross-linking of NIPA monomers on pellets surface, using a photoinitiator and UV-irradiation at 366 nm, was developed. The composition of coating mixture and the time of irradiation were optimized using oscillatory rheometry. Coating did not significantly change the shape, size, or friability of the pellets but remarkably decreased the porosity and sustained drug release for several hours. In situ formation and cross-linking of PNIPA on the pellet appears as a feasible way for controlling drug release.


Asunto(s)
Resinas Acrílicas/química , Portadores de Fármacos , Excipientes/química , Fotoquímica , Tecnología Farmacéutica/métodos , Acrilamidas/química , Resinas Acrílicas/efectos de la radiación , Celulosa/química , Química Farmacéutica , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Preparaciones de Acción Retardada , Excipientes/efectos de la radiación , Microscopía Electrónica de Rastreo , Porosidad , Povidona/química , Polvos , Reología , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Comprimidos , Teofilina/química , Factores de Tiempo , Torque , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA