Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
eNeuro ; 11(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38164600

RESUMEN

Mechanisms underlying cerebrovascular stroke outcomes are poorly understood, and the effects of biological sex on cerebrovascular regulation post-stroke have yet to be fully comprehended. Here, we explore the overlapping roles of gonadal sex hormones and rho-kinase (ROCK), two important modulators of cerebrovascular tone, on the acute cerebrovascular response to photothrombotic (PT) focal ischemia in mice. Male mice were gonadectomized and female mice were ovariectomized to remove gonadal hormones, whereas control ("intact") animals received a sham surgery prior to stroke induction. Intact wild-type (WT) males showed a delayed drop in cerebral blood flow (CBF) compared with intact WT females, whereby maximal CBF drop was observed 48 h following stroke. Gonadectomy in males did not alter this response. However, ovariectomy in WT females produced a "male-like" phenotype. Intact Rock2+/- males also showed the same phenotypic response, which was not altered by gonadectomy. Alternatively, intact Rock2+/- females showed a significant difference in CBF values compared with intact WT females, displaying higher CBF values immediately post-stroke and showing a maximal CBF drop 48 h post-stroke. This pattern was not altered by ovariectomy. Altogether, these data illustrate sex differences in acute CBF responses to PT stroke, which seem to involve gonadal female sex hormones and ROCK2. Overall, this study provides a framework for exploring sex differences in acute CBF responses to focal ischemic stroke in mice.


Asunto(s)
Hormonas Esteroides Gonadales , Accidente Cerebrovascular , Ratones , Femenino , Masculino , Animales , Humanos , Hormonas Esteroides Gonadales/farmacología , Hormonas Esteroides Gonadales/fisiología , Ovariectomía , Fenotipo , Caracteres Sexuales , Circulación Cerebrovascular
2.
PLoS Pathog ; 19(9): e1011658, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37747879

RESUMEN

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.


Asunto(s)
Interleucina-4 , Activación de Macrófagos , Animales , Ratones , Colina/metabolismo , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos , Ratones Endogámicos C57BL , Regulación hacia Arriba
3.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136598

RESUMEN

Preterm birth is the leading cause of death in children under 5 years of age. Premature infants who receive life-saving oxygen therapy often develop bronchopulmonary dysplasia (BPD), a chronic lung disease. Infants with BPD are at a high risk of abnormal neurodevelopment, including motor and cognitive difficulties. While neural progenitor cells (NPCs) are crucial for proper brain development, it is unclear whether they play a role in BPD-associated neurodevelopmental deficits. Here, we show that hyperoxia-induced experimental BPD in newborn mice led to lifelong impairments in cerebrovascular structure and function as well as impairments in NPC self-renewal and neurogenesis. A neurosphere assay utilizing nonhuman primate preterm baboon NPCs confirmed impairment in NPC function. Moreover, gene expression profiling revealed that genes involved in cell proliferation, angiogenesis, vascular autoregulation, neuronal formation, and neurotransmission were dysregulated following neonatal hyperoxia. These impairments were associated with motor and cognitive decline in aging hyperoxia-exposed mice, reminiscent of deficits observed in patients with BPD. Together, our findings establish a relationship between BPD and abnormal neurodevelopmental outcomes and identify molecular and cellular players of neonatal brain injury that persist throughout adulthood that may be targeted for early intervention to aid this vulnerable patient population.


Asunto(s)
Displasia Broncopulmonar , Disfunción Cognitiva , Hiperoxia , Nacimiento Prematuro , Recién Nacido , Femenino , Ratones , Humanos , Animales , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Neurogénesis , Disfunción Cognitiva/etiología , Cognición , Pulmón/metabolismo
4.
Science ; 375(6582): eabm4459, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175798

RESUMEN

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Asunto(s)
Barrera Hematoencefálica/fisiología , Proteínas Ligadas a GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Accidente Cerebrovascular/terapia , Proteínas Wnt/genética , Vía de Señalización Wnt , Animales , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Sistema Nervioso/embriología , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Pez Cebra
5.
Neurobiol Dis ; 137: 104756, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31978604

RESUMEN

Vascular cognitive impairment (VCI) is associated with chronic cerebral hypoperfusion (CCH) and memory deficits, and often occurs concurrently with metabolic syndrome (MetS). Despite their common occurrence, it is unknown whether CCH and MetS act synergistically to exacerbate VCI-associated pathology. Here, using male Sprague-Dawley rats, we examined the effects of a clinically relevant model of adolescent-onset MetS and adult-onset CCH on neuro-vascular outcomes, combining a cafeteria diet with a 2-vessel occlusion (2VO) model. Using longitudinal imaging, histology, and behavioural assessments, we identified several features of MetS and CCH including reduced cerebral blood volume, white matter atrophy, alterations in hippocampal cell density, and memory impairment. Furthermore, we identified a number of significant associations, potentially predictive of MetS and pathophysiological outcomes. White matter volume was positively correlated to HDL cholesterol; hippocampal cell density was negatively correlated to fasted blood glucose; cerebral blood flow and volume was negatively predicted by the combination of 2VO surgery and increased fasted blood glucose. These results emphasize the importance of including comorbid conditions when modeling VCI, and they outline a highly translational preclinical model that could be used to investigate potential interventions to mitigate VCI-associated pathology and cognitive decline.


Asunto(s)
Isquemia Encefálica/patología , Cognición/fisiología , Síndrome Metabólico/patología , Perfusión , Animales , Isquemia Encefálica/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Síndrome Metabólico/fisiopatología , Ratas Sprague-Dawley
6.
Elife ; 3: e03720, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25244320

RESUMEN

During development, tissue repair, and tumor growth, most blood vessel networks are generated through angiogenesis. Vascular endothelial growth factor (VEGF) is a key regulator of this process and currently both VEGF and its receptors, VEGFR1, VEGFR2, and Neuropilin1 (NRP1), are targeted in therapeutic strategies for vascular disease and cancer. NRP1 is essential for vascular morphogenesis, but how NRP1 functions to guide vascular development has not been completely elucidated. In this study, we generated a mouse line harboring a point mutation in the endogenous Nrp1 locus that selectively abolishes VEGF-NRP1 binding (Nrp1(VEGF-)). Nrp1(VEGF-) mutants survive to adulthood with normal vasculature revealing that NRP1 functions independent of VEGF-NRP1 binding during developmental angiogenesis. Moreover, we found that Nrp1-deficient vessels have reduced VEGFR2 surface expression in vivo demonstrating that NRP1 regulates its co-receptor, VEGFR2. Given the resources invested in NRP1-targeted anti-angiogenesis therapies, our results will be integral for developing strategies to re-build vasculature in disease.


Asunto(s)
Neovascularización Fisiológica , Neuropilina-1/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Sitios de Unión , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Ligandos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Neuropilina-1/química , Unión Proteica , Ratas
7.
J Neuroinflammation ; 10: 57, 2013 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-23642031

RESUMEN

BACKGROUND: Recent evidence suggests that the inducible kinin B1 receptor (B1R) contributes to pathogenic neuroinflammation induced by amyloid-beta (Aß) peptide. The present study aims at identifying the cellular distribution and potentially detrimental role of B1R on cognitive and cerebrovascular functions in a mouse model of Alzheimer's disease (AD). METHODS: Transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APPSwe,Ind, line J20) were treated with a selective and brain penetrant B1R antagonist (SSR240612, 10 mg/kg/day for 5 or 10 weeks) or vehicle. The impact of B1R blockade was measured on i) spatial learning and memory performance in the Morris water maze, ii) cerebral blood flow (CBF) responses to sensory stimulation using laser Doppler flowmetry, and iii) reactivity of isolated cerebral arteries using online videomicroscopy. Aß burden was quantified by ELISA and immunostaining, while other AD landmarks were measured by western blot and immunohistochemistry. RESULTS: B1R protein levels were increased in APP mouse hippocampus and, prominently, in reactive astrocytes surrounding Aß plaques. In APP mice, B1R antagonism with SSR240612 improved spatial learning, memory and normalized protein levels of the memory-related early gene Egr-1 in the dentate gyrus of the hippocampus. B1R antagonism restored sensory-evoked CBF responses, endothelium-dependent dilations, and normalized cerebrovascular protein levels of endothelial nitric oxide synthase and B2R. In addition, SSR240612 reduced (approximately 50%) microglial, but not astroglial, activation, brain levels of soluble Aß1-42, diffuse and dense-core Aß plaques, and it increased protein levels of the Aß brain efflux transporter lipoprotein receptor-related protein-1 in cerebral microvessels. CONCLUSION: These findings show a selective upregulation of astroglial B1R in the APP mouse brain, and the capacity of the B1R antagonist to abrogate amyloidosis, cerebrovascular and memory deficits. Collectively, these findings provide convincing evidence for a role of B1R in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antagonistas del Receptor de Bradiquinina B1 , Circulación Cerebrovascular/efectos de los fármacos , Cognición/efectos de los fármacos , Dioxoles/uso terapéutico , Sulfonamidas/uso terapéutico , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Animales , Astrocitos/metabolismo , Western Blotting , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Humanos , Inmunohistoquímica , Flujometría por Láser-Doppler , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Placa Amiloide/tratamiento farmacológico , Placa Amiloide/patología , Receptor de Bradiquinina B1/metabolismo
8.
J Neurosci ; 33(8): 3390-401, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426667

RESUMEN

The locus coeruleus (LC), the main source of brain noradrenalin (NA), modulates cortical activity, cerebral blood flow (CBF), glucose metabolism, and blood-brain barrier permeability. However, the role of the LC-NA system in the regulation of cortical CBF has remained elusive. This rat study shows that similar proportions (∼20%) of cortical pyramidal cells and GABA interneurons are contacted by LC-NA afferents on their cell soma or proximal dendrites. LC stimulation induced ipsilateral activation (c-Fos upregulation) of pyramidal cells and of a larger proportion (>36%) of interneurons that colocalize parvalbumin, somatostatin, or nitric oxide synthase compared with pyramidal cells expressing cyclooxygenase-2 (22%, p < 0.05) or vasoactive intestinal polypeptide-containing interneurons (16%, p < 0.01). Concurrently, LC stimulation elicited larger ipsilateral compared with contralateral increases in cortical CBF (52 vs 31%, p < 0.01). These CBF responses were almost abolished (-70%, p < 0.001) by cortical NA denervation with DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] and were significantly reduced by α- and ß-adrenoceptor antagonists (-40%, p < 0.001 and -30%, p < 0.05, respectively). Blockade of glutamatergic or GABAergic neurotransmission with NMDA or GABA(A) receptor antagonists potently reduced the LC-induced hyperemic response (-56%, p < 0.001 or -47%, p < 0.05). Moreover, inhibition of astroglial metabolism (-35%, p < 0.01), vasoactive epoxyeicosatrienoic acids (EETs; -60%, p < 0.001) synthesis, large-conductance, calcium-operated (BK, -52%, p < 0.05), and inward-rectifier (Kir, -40%, p < 0.05) K+ channels primarily impaired the hyperemic response. The data demonstrate that LC stimulation recruits a broad network of cortical excitatory and inhibitory neurons resulting in increased cortical activity and that K+ fluxes and EET signaling mediate a large part of the hemodynamic response.


Asunto(s)
Corteza Cerebral/fisiología , Circulación Cerebrovascular/fisiología , Locus Coeruleus/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/fisiología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Locus Coeruleus/irrigación sanguínea , Locus Coeruleus/citología , Masculino , Red Nerviosa/irrigación sanguínea , Red Nerviosa/citología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA