Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Circ Res ; 135(9): 890-909, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39263750

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.


Asunto(s)
Presión Sanguínea , Hipertensión , Janus Quinasa 2 , Ratones Noqueados , Factor de Transcripción STAT3 , Cloruro de Sodio Dietético , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Animales , Humanos , Ratones , Cloruro de Sodio Dietético/efectos adversos , Masculino , Factor de Transcripción STAT3/metabolismo , Hipertensión/metabolismo , Proteína smad3/metabolismo , Proteína smad3/genética , Inflamación/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Células Mieloides/enzimología , Femenino , Monocitos/metabolismo , Monocitos/efectos de los fármacos
2.
J Hum Hypertens ; 36(11): 952-959, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35469059

RESUMEN

The gut microbiota has recently gained attention due to its association with cardiovascular health, cancers, gastrointestinal disorders, and non-communicable diseases. One critical question is how the composition of the microbiota contributes to cardiovascular diseases (CVDs). Insightful reviews on the gut microbiota, its metabolites and the mechanisms that underlie its contribution to CVD are limited. Hence, the aim of this review was to describe linkages between the composition of the microbiota and CVD, CVD risk factors such as hypertension, diet, ageing, and sex differences. We have also highlighted potential therapies for improving the composition of the gut microbiota, which may result in better cardiovascular health.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Microbioma Gastrointestinal , Hipertensión , Humanos , Femenino , Masculino , Enfermedades Cardiovasculares/etiología , Hipertensión/etiología , Dieta
3.
Front Physiol ; 12: 793924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966295

RESUMEN

Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1ß, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.

4.
Circ Res ; 128(7): 908-933, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793336

RESUMEN

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.


Asunto(s)
Hipertensión/inmunología , Inmunidad Celular/fisiología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Antihipertensivos/uso terapéutico , Linfocitos B/inmunología , Proteínas del Sistema Complemento/inmunología , Citocinas/inmunología , Células Dendríticas/inmunología , Resistencia a Medicamentos , Femenino , Microbioma Gastrointestinal/inmunología , Factores de Riesgo de Enfermedad Cardiaca , Interacciones Microbiota-Huesped , Humanos , Hipertensión/tratamiento farmacológico , Fenómenos del Sistema Inmunológico , Inmunidad Innata , Inflamasomas/inmunología , Inflamación/genética , Inflamación/inmunología , Macrófagos/inmunología , Masculino , Monocitos/inmunología , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos , Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Virosis/inmunología
5.
Cardiovasc Res ; 117(5): 1358-1371, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33038226

RESUMEN

AIMS: Prior studies have focused on the role of the kidney and vasculature in salt-induced modulation of blood pressure; however, recent data indicate that sodium accumulates in tissues and can activate immune cells. We sought to examine mechanisms by which salt causes activation of human monocytes both in vivo and in vitro. METHODS AND RESULTS: To study the effect of salt in human monocytes, monocytes were isolated from volunteers to perform several in vitro experiments. Exposure of human monocytes to elevated Na+ex vivo caused a co-ordinated response involving isolevuglandin (IsoLG)-adduct formation, acquisition of a dendritic cell (DC)-like morphology, expression of activation markers CD83 and CD16, and increased production of pro-inflammatory cytokines tumour necrosis factor-α, interleukin (IL)-6, and IL-1ß. High salt also caused a marked change in monocyte gene expression as detected by RNA sequencing and enhanced monocyte migration to the chemokine CC motif chemokine ligand 5. NADPH-oxidase inhibition attenuated monocyte activation and IsoLG-adduct formation. The increase in IsoLG-adducts correlated with risk factors including body mass index, pulse pressure. Monocytes exposed to high salt stimulated IL-17A production from autologous CD4+ and CD8+ T cells. In addition, to evaluate the effect of salt in vivo, monocytes and T cells isolated from humans were adoptively transferred to immunodeficient NSG mice. Salt feeding of humanized mice caused monocyte-dependent activation of human T cells reflected by proliferation and accumulation of T cells in the bone marrow. Moreover, we performed a cross-sectional study in 70 prehypertensive subjects. Blood was collected for flow cytometric analysis and 23Na magnetic resonance imaging was performed for tissue sodium measurements. Monocytes from humans with high skin Na+ exhibited increased IsoLG-adduct accumulation and CD83 expression. CONCLUSION: Human monocytes exhibit co-ordinated increases in parameters of activation, conversion to a DC-like phenotype and ability to activate T cells upon both in vitro and in vivo sodium exposure. The ability of monocytes to be activated by sodium is related to in vivo cardiovascular disease risk factors. We therefore propose that in addition to the kidney and vasculature, immune cells like monocytes convey salt-induced cardiovascular risk in humans.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Lípidos , Monocitos/efectos de los fármacos , NADPH Oxidasas/metabolismo , Cloruro de Sodio/farmacología , Traslado Adoptivo , Adulto , Anciano , Animales , Antígenos CD/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Citocinas/metabolismo , Activación Enzimática , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Inmunoglobulinas/metabolismo , Mediadores de Inflamación/metabolismo , Activación de Linfocitos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Persona de Mediana Edad , Monocitos/enzimología , Monocitos/inmunología , Monocitos/trasplante , Fenotipo , Receptores de IgG/metabolismo , Cloruro de Sodio Dietético/farmacología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígeno CD83
7.
J Am Coll Cardiol ; 74(23): 2939-2947, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31806138

RESUMEN

Afferent baroreflex failure is most often due to damage of the carotid sinus nerve because of neck surgery or radiation. The clinical picture is characterized by extreme blood pressure lability with severe hypertensive crises, hypotensive episodes, and orthostatic hypotension, making it the most difficult form of hypertension to manage. There is little evidence-based data to guide treatment. Recommendations rely on understanding the underlying pathophysiology, relevant clinical pharmacology, and anecdotal experience. The goal of treatment should be improving quality of life rather than normalization of blood pressure, which is rarely achievable. Long-acting central sympatholytic drugs are the mainstay of treatment, used at the lowest doses that prevent the largest hypertensive surges. Short-acting clonidine should be avoided because of rebound hypertension, but can be added to control residual hypertensive episodes, often triggered by mental stress or exertion. Hypotensive episodes can be managed with countermeasures and short-acting pressor agents if necessary.


Asunto(s)
Barorreflejo/fisiología , Determinación de la Presión Sanguínea/métodos , Presión Sanguínea/fisiología , Manejo de la Enfermedad , Hipotensión Ortostática/diagnóstico , Humanos , Hipotensión Ortostática/fisiopatología
8.
Cardiovasc Res ; 114(11): 1547-1563, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29800237

RESUMEN

Aims: Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function. Methods and results: Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1ß, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3. Conclusions: These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.


Asunto(s)
Presión Sanguínea , Diferenciación Celular , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , Hipertensión/metabolismo , Interleucina-6/metabolismo , Monocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Anciano , Angiotensina II , Animales , Estudios de Casos y Controles , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Masculino , Mecanotransducción Celular , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Fenotipo , Estrés Mecánico
9.
J Am Soc Hypertens ; 9(6): 435-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26051925

RESUMEN

Removal of carotid body (CB) improves animal models of hypertension (HTN) and heart failure, via withdrawal of chemoreflex-induced sympathetic activation. Effect of CB tumor (CBT) resection on blood pressure (BP) in subjects with HTN is unknown. A retrospective analysis of 20 subjects with HTN (BP≥140/90 mmHg or anti-hypertensives use) out of 134 with CBT resection. Short-term (30 days from surgery) and long-term (slope of regressions on time over the entire follow-up) changes in BP and heart rate were adjusted for covariates (interval between readings, total follow-up, number of readings and changes in therapy). Age and duration of HTN were 56±4 and 9±5 years. Adjusted short-term decreases in systolic (SBP: -9.9±3.1, p<0.001) and pulse pressures (PP: -7.9±2.7, p<0.002) were significant and correlated with their respective long-term changes (SBP: r=0.47, p=0.047; PP: r=0.54, p=0.019). There was a strong relationship between adjusted short-term changes in SBP and PP (r=0.64, p<0.004). Six (50% of responders or 33% of the total) had short-term falls of SBP ≥10 mmHg and of PP ≥ 5 mmHg. First study to show that unilateral CBT resection is associated with sustained reduction of BP in hypertensive patients. Targeted CB chemoreflex removal could play a role in the therapy of human HTN.


Asunto(s)
Antihipertensivos/uso terapéutico , Tumor del Cuerpo Carotídeo/cirugía , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Factores de Edad , Anciano , Monitoreo Ambulatorio de la Presión Arterial , Tumor del Cuerpo Carotídeo/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Medición de Riesgo , Factores Sexuales , Factores de Tiempo
10.
J Clin Invest ; 124(10): 4642-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25244096

RESUMEN

Oxidative damage and inflammation are both implicated in the genesis of hypertension; however, the mechanisms by which these stimuli promote hypertension are not fully understood. Here, we have described a pathway in which hypertensive stimuli promote dendritic cell (DC) activation of T cells, ultimately leading to hypertension. Using multiple murine models of hypertension, we determined that proteins oxidatively modified by highly reactive γ-ketoaldehydes (isoketals) are formed in hypertension and accumulate in DCs. Isoketal accumulation was associated with DC production of IL-6, IL-1ß, and IL-23 and an increase in costimulatory proteins CD80 and CD86. These activated DCs promoted T cell, particularly CD8+ T cell, proliferation; production of IFN-γ and IL-17A; and hypertension. Moreover, isoketal scavengers prevented these hypertension-associated events. Plasma F2-isoprostanes, which are formed in concert with isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. Isoketal-modified proteins were also markedly elevated in circulating monocytes and DCs from humans with hypertension. Our data reveal that hypertension activates DCs, in large part by promoting the formation of isoketals, and suggest that reducing isoketals has potential as a treatment strategy for this disease.


Asunto(s)
Células Dendríticas/inmunología , Hipertensión/patología , Activación de Linfocitos , Linfocitos T/citología , Anciano , Aldehídos/química , Angiotensina II/metabolismo , Animales , Células Presentadoras de Antígenos/inmunología , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Proliferación Celular , Estudios de Cohortes , Células Dendríticas/citología , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Estrés Oxidativo , Oxígeno/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA