Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Nutr Biochem ; 125: 109558, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185349

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Up to now, no treatment can stop the progression of IPF. Vitamin D3 (VD) reduces experimental lung fibrosis in murine models and depletion of vitamin D3 might be associated with the reduced survival of patients with IPF. In this context, we determined if VD can prevent the pro-fibrotic functions of human lung fibroblasts (HLFs) isolated from patients with IPF. IPF and control HLFs were derived from surgical lung biopsies collected from patients with IPF or with primary lung cancer, respectively. VD (3-100 nM) markedly reduced the basal and PDGF-induced proliferation of HLFs. VD also altered cell cycle by increasing the percentage of IPF HLFs arrested in the G0/G1 phase, and by downregulating the expression of various cell cycle regulatory proteins. In addition, VD barely prevented the TGF-ß1-induced differentiation in HLFs. At 100 nM, VD slightly reduced the expression of the pro-fibrotic marker α-smooth muscle actin, and had no effect on fibronectin and collagen-1 expression. In contrast, 100 nM VD strongly inhibited the aerobic glycolytic metabolism induced by TGF- ß1. Finally, VD reduced both the secretion of lactate, the levels of lactate deshydrogenase mRNA and the activity of intracellular LDH in IPF HLFs. In conclusion, our study shows that VD reduced pro-fibrotic functions of HLFs. These findings suggest that it might be interesting to assess the potential clinical benefits of vitamin D supplementation in patients with IPF, especially on lung function decline.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Humanos , Animales , Ratones , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibroblastos/metabolismo , Diferenciación Celular , Lactatos/farmacología
2.
Biochem Pharmacol ; 216: 115801, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37696458

RESUMEN

Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias Pulmonares , Hidrocarburos Policíclicos Aromáticos , Humanos , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/toxicidad , Receptores de Hidrocarburo de Aril/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Microambiente Tumoral
3.
Environ Pollut ; 328: 121653, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080521

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental contaminants, triggering deleterious effects such as carcinogenicity and immunosuppression, and peripheral blood mononuclear cells (PBMCs) are among the main cell types targeted by these pollutants. In the present study, we sought to identify the expression profiles and function of miRNAs, gene regulators involved in major cellular processes recently linked to environmental pollutants, in PBMC-exposed to the prototypical PAH, benzo[a]pyrene (B[a]P). Using small RNA deep sequencing, we identified several B[a]P-responsive miRNAs. Bioinformatics analyses showed that their predicted targets could modulate biological processes relevant to cell death and survival. Further studies of the most highly induced miRNA, miR-132, showed that its up-regulation by B[a]P was time- and dose-dependent and required aryl hydrocarbon receptor (AhR) activation. By evaluating the role of miR-132 in B[a]P-induced cell death, we propose a mechanism linking B[a]P-induced miR-132 expression and cytochromes P-450 (CYPs) 1A1 and 1B1 mRNA levels, which could contribute to the apoptotic response of PBMCs. Altogether, this study increases our understanding of the roles of miRNAs induced by B[a]P and provides the basis for further investigations into the mechanisms of gene expression regulation by PAHs.


Asunto(s)
Contaminantes Ambientales , MicroARNs , Hidrocarburos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/toxicidad , Leucocitos Mononucleares , Sistema Enzimático del Citocromo P-450 , MicroARNs/genética , Contaminantes Ambientales/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
4.
Cell Biol Toxicol ; 39(2): 371-390, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35412187

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a worldwide epidemic for which environmental contaminants are increasingly recognized as important etiological factors. Among them, the combination of benzo[a]pyrene (B[a]P), a potent environmental carcinogen, with ethanol, was shown to induce the transition of steatosis toward steatohepatitis. However, the underlying mechanisms involved remain to be deciphered. In this context, we used high-fat diet fed zebrafish model, in which we previously observed progression of steatosis to a steatohepatitis-like state following a 7-day-co-exposure to 43 mM ethanol and 25 nM B[a]P. Transcriptomic analysis highlighted the potent role of mitochondrial dysfunction, alterations in heme and iron homeostasis, involvement of aryl hydrocarbon receptor (AhR) signaling, and oxidative stress. Most of these mRNA dysregulations were validated by RT-qPCR. Moreover, similar changes were observed using a human in vitro hepatocyte model, HepaRG cells. The mitochondria structural and functional alterations were confirmed by transmission electronic microscopy and Seahorse technology, respectively. Involvement of AhR signaling was evidenced by using in vivo an AhR antagonist, CH223191, and in vitro in AhR-knock-out HepaRG cells. Furthermore, as co-exposure was found to increase the levels of both heme and hemin, we investigated if mitochondrial iron could induce oxidative stress. We found that mitochondrial labile iron content was raised in toxicant-exposed larvae. This increase was prevented by the iron chelator, deferoxamine, which also inhibited liver co-exposure toxicity. Overall, these results suggest that the increase in mitochondrial iron content induced by B[a]P/ethanol co-exposure causes mitochondrial dysfunction that contributes to the pathological progression of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Etanol/toxicidad , Pez Cebra , Benzo(a)pireno/toxicidad , Larva , Transcriptoma , Mitocondrias , Hemo
5.
Biochem Pharmacol ; 199: 115012, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35393120

RESUMEN

Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.


Asunto(s)
Leptina , Obesidad , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología , Humanos , Insulina/metabolismo , Leptina/metabolismo , Obesidad/metabolismo
6.
Free Radic Biol Med ; 160: 246-262, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32791186

RESUMEN

A growing body of evidences indicate the major role of extracellular vesicles (EVs) as players of cell communication in the pathogenesis of liver diseases. EVs are membrane-enclosed vesicles released by cells into the extracellular environment. Oxidative stress is also a key component of liver disease pathogenesis, but no role for hepatocyte-derived EVs has yet been described in the development of this process. Recently, some polycyclic aromatic hydrocarbons (PAHs), widespread environmental contaminants, were demonstrated to induce EV release from hepatocytes. They are also well-known to trigger oxidative stress leading to cell death. Therefore, the aim of this work was to investigate the involvement of EVs derived from PAHs-treated hepatocytes (PAH-EVs) in possible oxidative damages of healthy recipient hepatocytes, using both WIF-B9 and primary rat hepatocytes. We first showed that the release of EVs from PAHs -treated hepatocytes depended on oxidative stress. PAH-EVs were enriched in proteins related to oxidative stress such as NADPH oxidase and ferritin. They were also demonstrated to contain more iron. PAH-EVs could then induce oxidative stress in recipient hepatocytes, thereby leading to apoptosis. Mitochondria and lysosomes of recipient hepatocytes exhibited significant structural alterations. All those damages were dependent on internalization of EVs that reached lysosomes with their cargoes. Lysosomes thus appeared as critical organelles for EVs to induce apoptosis. In addition, pro-oxidant components of PAH-EVs, e.g. NADPH oxidase and iron, were revealed to be necessary for this cell death.


Asunto(s)
Vesículas Extracelulares , Hidrocarburos Policíclicos Aromáticos , Animales , Vesículas Extracelulares/metabolismo , Hepatocitos , Hierro/metabolismo , Estrés Oxidativo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Ratas
7.
Mar Drugs ; 18(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861403

RESUMEN

Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-ß was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.


Asunto(s)
Benzo(a)pireno/toxicidad , Productos Biológicos/farmacología , Microalgas/química , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A1/metabolismo , Citocinas/efectos de los fármacos , Células Endoteliales , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Humanos , Océanos y Mares
8.
Biochimie ; 167: 106-118, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31545993

RESUMEN

Microalgae are photosynthetic microorganisms that produce numerous bioactive molecules that can be used as food supplement to prevent chronic disease installation. Indeed, they produce phycobiliproteins, polysaccharides, lipids, carotenoids and sterolic compounds. The use of microalgae in human nutrition provide a mixture of these molecules with synergistic effect. The aim of this review is to present the specific roles played by the xanthophylls, and specifically astaxanthin and fucoxanthin, two high added value carotenoids, and by microalgal phytosterols such as ß-sitosterol, campesterol and stigmasterol on several cell mechanisms involved in the prevention of cardiometabolic diseases and cancers. This review explains how these microalgal molecules modulate cell signaling pathways involved in carbohydrate and lipid metabolisms, inflammation, apoptosis, invasion and metastasis. Xanthophylls and phytosterols are involved in the reduction of inflammatory markers in relation with the regulation of the c-Jun N-terminal kinases and nuclear factor-kappa B signaling pathways, and suppression of production of pro-inflammatory mediators. Xanthophylls act on glucose and lipid metabolisms via both the upregulation of peroxisome proliferator-activated receptors (PPARs) and glucose transporters and its effects on the expression of enzymes involved in fatty acid synthesis and cholesterol metabolism. Their anti-cancer effects are related to the induction of intrinsic apoptosis due to down-regulation of key regulatory kinases. The anti-angiogenesis, anti-proliferative and anti-invasive effects are correlated with decreased production of endothelial growth factors and of matrix metalloproteinases. Phytosterols have a major role on cholesterol absorption via modification of the activities of Niemann-Pick C1 like 1 and ATP-binding cassette transporters and on cholesterol esterification. Their action are also related with the modulation of PPARs and sterol regulatory element-binding protein-1 activities.


Asunto(s)
Colesterol/análogos & derivados , Fitosteroles/farmacología , Sitoesteroles/farmacología , Xantófilas/farmacología , Apoptosis/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Enfermedades Cardiovasculares/prevención & control , Colesterol/farmacología , Suplementos Dietéticos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedades Metabólicas/prevención & control , Microalgas/metabolismo , Neoplasias/prevención & control , Transducción de Señal
9.
Environ Pollut ; 255(Pt 1): 113171, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31539851

RESUMEN

Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects. Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers. To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs. These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.


Asunto(s)
Células Endoteliales/metabolismo , Contaminantes Ambientales/toxicidad , Vesículas Extracelulares/metabolismo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Orina/química , Animales , Biomarcadores/metabolismo , Líquidos Corporales/química , Línea Celular , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo del Ambiente/métodos , Exosomas , Femenino , Humanos , Ratas , Receptores de Hidrocarburo de Aril/metabolismo
10.
Biochimie ; 163: 171-183, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31228544

RESUMEN

Despite the improvement of diagnostic methods and anticancer therapeutics, the human population is still facing an increasing incidence of several types of cancers. According to the World Health Organization, this growing trend would be partly linked to our environment, with around 20% of cancers stemming from exposure to environmental contaminants, notably chemicals like polycyclic aromatic hydrocarbons (PAHs). PAHs are widespread pollutants in our environment resulting from incomplete combustion or pyrolysis of organic material, and thus produced by both natural and anthropic sources; notably benzo[a]pyrene (B[a]P), i.e. the prototypical molecule of this family, that can be detected in cigarette smoke, diesel exhaust particles, occupational-related fumes, and grilled food. This molecule is a well-recognized carcinogen belonging to group 1 carcinogens. Indeed, it can target the different steps of the carcinogenic process and all cancer hallmarks. Interestingly, H+ dynamics have been described as key parameters for the occurrence of several, if not all, of these hallmarks. However, information regarding the role of such parameters during environmental carcinogenesis is still very scarce. The present review will thus mainly give an overview of the impact of B[a]P on H+ dynamics in liver cells, and will show how such alterations might impact different aspects related to the finely-tuned balance between cell death and survival processes, thereby likely favoring environmental carcinogenesis. In total, the main objective of this review is to encourage further research in this poorly explored field of environmental molecular toxicology.


Asunto(s)
Benzo(a)pireno/toxicidad , Carcinogénesis/inducido químicamente , Carcinógenos/toxicidad , Neoplasias/metabolismo , Protones , Animales , Benzo(a)pireno/metabolismo , Carcinógenos/metabolismo , Exposición a Riesgos Ambientales , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología
11.
Cardiovasc Toxicol ; 19(3): 198-209, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955163

RESUMEN

Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [ßAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Endotelio Vascular/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Contaminación por Tráfico Vehicular/efectos adversos , Enfermedades Vasculares/inducido químicamente , Emisiones de Vehículos/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Homeostasis , Humanos , Pronóstico , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Medición de Riesgo , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/fisiopatología
12.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268890

RESUMEN

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Asunto(s)
Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/genética , Etanol/toxicidad , Ácidos Grasos/farmacología , Hepatocitos/efectos de los fármacos , Óxido Nítrico/metabolismo , Alcohol Deshidrogenasa/genética , Alcohol Deshidrogenasa/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Compuestos Azo/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Benzoatos/farmacología , Línea Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Citocromo P-450 CYP1A1/metabolismo , Daño del ADN , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Imidazoles/farmacología , Metaloporfirinas/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Necrosis/inducido químicamente , Necrosis/genética , Necrosis/metabolismo , Óxido Nítrico/agonistas , Pirazoles/farmacología , Ratas , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Superóxidos/agonistas , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo
13.
Sci Rep ; 8(1): 5963, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654281

RESUMEN

Hepatic steatosis (i.e. lipid accumulation) and steatohepatitis have been related to diverse etiologic factors, including alcohol, obesity, environmental pollutants. However, no study has so far analyzed how these different factors might interplay regarding the progression of liver diseases. The impact of the co-exposure to the environmental carcinogen benzo[a]pyrene (B[a]P) and the lifestyle-related hepatotoxicant ethanol, was thus tested on in vitro models of steatosis (human HepaRG cell line; hybrid human/rat WIF-B9 cell line), and on an in vivo model (obese zebrafish larvae). Steatosis was induced prior to chronic treatments (14, 5 or 7 days for HepaRG, WIF-B9 or zebrafish, respectively). Toxicity and inflammation were analyzed in all models; the impact of steatosis and ethanol towards B[a]P metabolism was studied in HepaRG cells. Cytotoxicity and expression of inflammation markers upon co-exposure were increased in all steatotic models, compared to non steatotic counterparts. A change of B[a]P metabolism with a decrease in detoxification was detected in HepaRG cells under these conditions. A prior steatosis therefore enhanced the toxicity of B[a]P/ethanol co-exposure in vitro and in vivo; such a co-exposure might favor the appearance of a steatohepatitis-like state, with the development of inflammation. These deleterious effects could be partly explained by B[a]P metabolism alterations.


Asunto(s)
Benzo(a)pireno/efectos adversos , Etanol/efectos adversos , Hígado Graso/patología , Hígado/patología , Animales , Biomarcadores/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Contaminantes Ambientales/efectos adversos , Hígado Graso/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Larva/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratas , Pez Cebra
14.
Sci Rep ; 8(1): 4310, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523858

RESUMEN

Whereas many phagocytosis steps involve ionic fluxes, the underlying ion channels remain poorly defined. As reported in mice, the calcium conducting TRPV2 channel impacts the phagocytic process. Macrophage phagocytosis is critical for defense against pathogens. In cystic fibrosis (CF), macrophages have lost their capacity to act as suppressor cells and thus play a significant role in the initiating stages leading to chronic inflammation/infection. In a previous study, we demonstrated that impaired function of CF macrophages is due to a deficient phagocytosis. The aim of the present study was to investigate TRPV2 role in the phagocytosis capacity of healthy primary human macrophage by studying its activity, its membrane localization and its recruitment in lipid rafts. In primary human macrophages, we showed that P. aeruginosa recruits TRPV2 channels at the cell surface and induced a calcium influx required for bacterial phagocytosis. We presently demonstrate that to be functional and play a role in phagocytosis, TRPV2 might require a preferential localization in lipid rafts. Furthermore, CF macrophage displays a perturbed calcium homeostasis due to a defect in TRPV2. In this context, deregulated TRPV2-signaling in CF macrophages could explain their defective phagocytosis capacity that contribute to the maintenance of chronic infection.


Asunto(s)
Calcio/metabolismo , Fibrosis Quística/metabolismo , Macrófagos/metabolismo , Microdominios de Membrana/metabolismo , Fagocitosis , Canales Catiónicos TRPV/metabolismo , Adolescente , Adulto , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Sci Rep ; 7(1): 3262, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28607424

RESUMEN

Exposure to environmental polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (B(a)P), has been linked to several health-threatening risks. PAHs were also shown to hinder adrenergic receptor (ADR) responses. As we previously demonstrated that B(a)P can directly interact with the ß2ADR, we investigated here whether B(a)P could decrease ß2ADR responsiveness by triggering receptor desensitization phenomena. We firstly showed that exposure to B(a)P reduced ß2ADR-mediated epinephrine-induced induction of NR4A gene mRNAs and of intracellular cAMP. Analysis of ß2ADR protein expression demonstrated that B(a)P rapidly decreased membrane expression of ß2ADR with a subsequent degradation of receptor protein. B(a)P exposure concomitantly rapidly increased the ß2ADR mRNA levels. The use of the ß-blockers, propranolol and ICI 118.551, demonstrated the involvement of ß2ADR itself in this increase. However, sustained exposure to B(a)P induced a diminution of ß2ADR mRNA steady-state as a result of the acceleration of its degradation. Together, these results show that, beside the well-known activation of the aryl hydrocarbon receptor, PAH deleterious effects may involve the dysfunction of adrenergic responses through, in part, the desensitization of ß2ADR. This may be taken in consideration when ß2-agonists/antagonists are administered in patients exposed to important concentrations of PAHs, e.g. in cigarette smokers.


Asunto(s)
Benzo(a)pireno/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Epinefrina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteolisis , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Adrenérgicos beta 2/genética
16.
Sci Rep ; 7(1): 195, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298645

RESUMEN

Most tumors undergo metabolic reprogramming towards glycolysis, the so-called Warburg effect, to support growth and survival. Overexpression of IF1, the physiological inhibitor of the F0F1ATPase, has been related to this phenomenon and appears to be a relevant marker in cancer. Environmental contributions to cancer development are now widely accepted but little is known about the underlying intracellular mechanisms. Among the environmental pollutants humans are commonly exposed to, benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons (PAHs), is a well-known human carcinogen. Besides apoptotic signals, B[a]P can also induce survival signals in liver cells, both likely involved in cancer promotion. Our previous works showed that B[a]P elicited a Warburg-like effect, thus favoring cell survival. The present study aimed at further elucidating the molecular mechanisms involved in the B[a]P-induced metabolic reprogramming, by testing the possible involvement of IF1. We presently demonstrate, both in vitro and in vivo, that PAHs, especially B[a]P, strongly increase IF1 expression. Such an increase, which might rely on ß2-adrenergic receptor activation, notably participates to the B[a]P-induced glycolytic shift and cell survival in liver cells. By identifying IF1 as a target of PAHs, this study provides new insights about how environmental factors may contribute to related carcinogenesis.


Asunto(s)
Carcinógenos Ambientales/toxicidad , Carcinoma Hepatocelular/genética , Glucólisis , Neoplasias Hepáticas/genética , Hidrocarburos Policíclicos Aromáticos/toxicidad , Proteínas/genética , Animales , Apoptosis , Benzo(a)pireno/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Línea Celular , Supervivencia Celular , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Experimentales , Proteínas/metabolismo , Ratas , Receptores Adrenérgicos beta 2/genética , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba , Proteína Inhibidora ATPasa
17.
Semin Cancer Biol ; 43: 49-65, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088583

RESUMEN

According to the World Health Organization, around 20% of all cancers would be due to environmental factors. Among these factors, several chemicals are indeed well recognized carcinogens. The widespread contaminant benzo[a]pyrene (B[a]P), an often used model carcinogen of the polycyclic aromatic hydrocarbons' family, has been suggested to target most, if not all, cancer hallmarks described by Hanahan and Weinberg. It is classified as a group I carcinogen by the International Agency for Research on Cancer; however, the precise intracellular mechanisms underlying its carcinogenic properties remain yet to be thoroughly defined. Recently, the pH homeostasis, a well known regulator of carcinogenic processes, was suggested to be a key actor in both cell death and Warburg-like metabolic reprogramming induced upon B[a]P exposure. The present review will highlight those data with the aim of favoring research on the role of H+ dynamics in environmental carcinogenesis.


Asunto(s)
Carcinogénesis , Carcinógenos/toxicidad , Exposición a Riesgos Ambientales , Homeostasis , Concentración de Iones de Hidrógeno , Humanos
18.
Sci Rep ; 6: 30776, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488617

RESUMEN

Cancer cells display alterations in many cellular processes. One core hallmark of cancer is the Warburg effect which is a glycolytic reprogramming that allows cells to survive and proliferate. Although the contributions of environmental contaminants to cancer development are widely accepted, the underlying mechanisms have to be clarified. Benzo[a]pyrene (B[a]P), the prototype of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, and it is a human carcinogen according to the International Agency for Research on Cancer. In addition to triggering apoptotic signals, B[a]P may induce survival signals, both of which are likely to be involved in cancer promotion. We previously suggested that B[a]P-induced mitochondrial dysfunctions, especially membrane hyperpolarization, might trigger cell survival signaling in rat hepatic epithelial F258 cells. Here, we further characterized these dysfunctions by focusing on energy metabolism. We found that B[a]P promoted a metabolic reprogramming. Cell respiration decreased and lactate production increased. These changes were associated with alterations in the tricarboxylic acid cycle which likely involve a dysfunction of the mitochondrial complex II. The glycolytic shift relied on activation of the Na(+)/H(+) exchanger 1 (NHE1) and appeared to be a key feature in B[a]P-induced cell survival related to changes in cell phenotype (epithelial-to-mesenchymal transition and cell migration).


Asunto(s)
Benzo(a)pireno/toxicidad , Carcinógenos Ambientales/toxicidad , Reprogramación Celular/efectos de los fármacos , Hígado/citología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Supervivencia Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Ácido Láctico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas
19.
Sci Rep ; 6: 28008, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27302366

RESUMEN

Transmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na(+)/H(+) exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways.


Asunto(s)
Proteína Ligando Fas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Quinasas Asociadas a rho/metabolismo , Línea Celular , Movimiento Celular , Humanos , Fosforilación , Protones , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo
20.
Toxicol In Vitro ; 29(7): 1597-608, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26086121

RESUMEN

Benzo[a]pyrene (B[a]P), the prototype molecule of polycyclic aromatic hydrocarbons, exhibits genotoxic and carcinogenic effects, which has led the International Agency for Research on Cancer to recognize it as a human carcinogen. Besides the well-known apoptotic signals triggered by B[a]P, survival signals have also been suggested to occur, both signals likely involved in cancer promotion. Our previous work showed that B[a]P induced an hyperpolarization of mitochondrial membrane potential (ΔΨm) in rat hepatic epithelial F258 cells. Elevated ΔΨm plays a role in tumor development and progression, and nitric oxide (NO) has been suggested to be responsible for increases in ΔΨm. The present study therefore aimed at evaluating the impact of B[a]P on NO level in F258 cells, and at testing the putative role for NO as a survival signal, notably in link with ΔΨm. Our data demonstrated that B[a]P exposure resulted in an NO production which was dependent upon the activation of the inducible NO synthase. This enzyme activation involved AhR and possibly p53 activation. Preventing NO production not only increased B[a]P-induced cell death but also blocked mitochondrial hyperpolarization. This therefore points to a role for NO as a survival signal upon B[a]P exposure, possibly targeting ΔΨm.


Asunto(s)
Benzo(a)pireno/toxicidad , Carcinógenos/toxicidad , Óxido Nítrico/metabolismo , Animales , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Receptores de Hidrocarburo de Aril/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA