Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4716, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830843

RESUMEN

BRCA2 is a tumor suppressor protein responsible for safeguarding the cellular genome from replication stress and genotoxicity, but the specific mechanism(s) by which this is achieved to prevent early oncogenesis remains unclear. Here, we provide evidence that BRCA2 acts as a critical suppressor of head-on transcription-replication conflicts (HO-TRCs). Using Okazaki-fragment sequencing (Ok-seq) and computational analysis, we identified origins (dormant origins) that are activated near the transcription termination sites (TTS) of highly expressed, long genes in response to replication stress. Dormant origins are a source for HO-TRCs, and drug treatments that inhibit dormant origin firing led to a reduction in HO-TRCs, R-loop formation, and DNA damage. Using super-resolution microscopy, we showed that HO-TRC events track with elongating RNA polymerase II, but not with transcription initiation. Importantly, RNase H2 is recruited to sites of HO-TRCs in a BRCA2-dependent manner to help alleviate toxic R-loops associated with HO-TRCs. Collectively, our results provide a mechanistic basis for how BRCA2 shields against genomic instability by preventing HO-TRCs through both direct and indirect means occurring at predetermined genomic sites based on the pre-cancer transcriptome.


Asunto(s)
Proteína BRCA2 , Replicación del ADN , ARN Polimerasa II , Ribonucleasa H , Humanos , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Ribonucleasa H/metabolismo , Ribonucleasa H/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Terminación de la Transcripción Genética , Daño del ADN , Origen de Réplica , Estructuras R-Loop , Línea Celular Tumoral
2.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098506

RESUMEN

Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.


Asunto(s)
Proteína BRCA2 , Recombinasa Rad51 , Proteína BRCA2/química , Reparación del ADN , ADN de Cadena Simple , Mutación Missense , Nucleoproteínas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
3.
Methods Mol Biol ; 2153: 101-113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840775

RESUMEN

The homologous recombination (HR) pathway maintains genomic integrity by repairing DNA double-strand breaks (DSBs), single-strand DNA gaps, and collapsed replication forks. The process of HR involves strand invasion, homology search, and DNA strand exchange between paired DNA molecules. HR is critical for the high-fidelity repair of DNA DSBs in mitotic cells and for the exchange of genetic information during meiosis. Here we describe a DNA strand exchange reaction in vitro utilizing purified proteins and defined DNA substrates to measure the strand invasion and pairing activities of the human RAD51 protein. We further discuss how this reaction can be catalytically stimulated by the mediator protein BRCA2.


Asunto(s)
Proteína BRCA2/metabolismo , ADN/metabolismo , Recombinasa Rad51/metabolismo , Roturas del ADN de Doble Cadena , Células HEK293 , Humanos , Meiosis , Mitosis , Reparación del ADN por Recombinación
4.
Proc Natl Acad Sci U S A ; 114(35): 9343-9348, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28798063

RESUMEN

A conserved hairpin-like structure comprised of a signal peptide and early mature region initiates protein transport across the SecY or Sec61α channel in Bacteria or Archaea and Eukarya, respectively. When and how this initiator substrate hairpin forms remains a mystery. Here, we have used the bacterial SecA ATPase motor protein and SecYEG channel complex to address this question. Engineering of a functional miniprotein substrate onto the end of SecA allowed us to efficiently form ternary complexes with SecYEG for spectroscopic studies. Förster resonance energy transfer mapping of key residues within this ternary complex demonstrates that the protein substrate adopts a hairpin-like structure immediately adjacent to the SecA two-helix finger subdomain before channel entry. Comparison of ADP and ATP-γS-bound states shows that the signal peptide partially inserts into the SecY channel in the latter state. Our study defines a unique preinsertion intermediate state where the SecA two-helix finger appears to play a role in both templating the substrate hairpin at the channel entrance and promoting its subsequent ATP-dependent insertion.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Secuencia de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Transporte de Proteínas/fisiología , Proteína SecA
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA