Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 629(8013): 919-926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589574

RESUMEN

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).


Asunto(s)
Antineoplásicos , Mutación , Neoplasias , Proteína Oncogénica p21(ras) , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Guanosina Trifosfato/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteína Oncogénica p21(ras)/antagonistas & inhibidores , Proteína Oncogénica p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091470

RESUMEN

RAF inhibitors unexpectedly induce ERK signaling in normal and tumor cells with elevated RAS activity. Paradoxical activation is believed to be RAS dependent. In this study, we showed that LY3009120, a pan-RAF inhibitor, can unexpectedly cause paradoxical ERK activation in KRASG12C-dependent lung cancer cell lines, when KRAS is inhibited by ARS1620, a KRASG12C inhibitor. Using H/N/KRAS-less mouse embryonic fibroblasts, we discovered that classical RAS proteins are not essential for RAF inhibitor-induced paradoxical ERK signaling. In their absence, RAF inhibitors can induce ERK phosphorylation, ERK target gene transcription, and cell proliferation. We further showed that the MRAS/SHOC2 complex is required for this process. This study highlights the complexity of the allosteric RAF regulation by RAF inhibitors, and the importance of other RAS-related proteins in this process.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Mutación/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasas raf/metabolismo , Proteínas ras/fisiología
3.
SLAS Discov ; 26(7): 922-932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33896272

RESUMEN

Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Descubrimiento de Drogas/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayos Analíticos de Alto Rendimiento , Ratones , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(48): 19450-5, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218567

RESUMEN

Liver kinase b1 (Lkb1) protein kinase activity regulates cell growth and cell polarity. Here, we show Lkb1 is essential for maintaining a balance between mitotic and postmitotic cell fates in development of the mammalian skeleton. In this process, Lkb1 activity controls the progression of mitotic chondrocytes to a mature, postmitotic hypertrophic fate. Loss of this Lkb1-dependent switch leads to a dramatic expansion of immature chondrocytes and formation of enchondroma-like tumors. Pathway analysis points to a mammalian target of rapamycin complex 1-dependent mechanism that can be partially suppressed by rapamycin treatment. These findings highlight a critical requirement for integration of mammalian target of rapamycin activity into developmental decision-making during mammalian skeletogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Condrocitos/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP , Análisis de Varianza , Animales , Bromodesoxiuridina , Técnicas Histológicas , Hibridación in Situ , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/metabolismo , Compuestos de Fenilurea , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
5.
Am J Physiol Endocrinol Metab ; 300(4): E633-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21177286

RESUMEN

The sympathetic nervous system can regulate both osteoblast and chondrocyte growth and activity through ß(2)-adrenergic receptors (ß(2)-AR). We have shown previously that ß(2)-AR activate both adenylyl cyclase and mitogen-activated protein kinases ERK1/2 in growth plate chondrocytes prepared from ribs of embryonic E18.5 mice. Here we examined ß(2)-AR inhibition of collagen type II (Col II) expression in growth plate chondrocytes and the molecular pathways involved. Stimulation of ß(2)-AR by isoproterenol inhibited Col II mRNA and protein levels by ∼50% beginning at 2 h, with both remaining suppressed over 24 h. This inhibition was blocked by propranolol and inhibitors of either MEK1 or PKA. Isoproterenol stimulated an AP-1-luciferase reporter and increased the expression of AP-1 factors c-Fos, Fra-1, Fra-2, c-Jun, and Jun-B but had no effect on Jun-D. Stimulation of AP-1 activity was blocked by inhibitors of MEK1 or PKA. siRNA inhibition of AP-1 factors showed that depletion of only Jun-B attenuated isoproterenol-mediated inhibition of Col II. Transfection with jun-B or c-fos showed selective inhibition of Col II mRNA and a Col II luciferase reporter construct by jun-B. Isoproterenol as well as jun-B overexpression in the chondrocytes also inhibited the expression of Sox-6 mRNA and protein, and depletion of Jun-B abrogated ß(2)-AR inhibition of Sox-6. Collectively, these findings demonstrate regulation of chondrocyte differentiation through ß(2)-AR mediated by ERK1/2 and PKA stimulation of the AP-1 factor Jun-B that inhibits the expression of Sox-6 and Col II.


Asunto(s)
Condrocitos/metabolismo , Colágeno Tipo II/genética , Placa de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Receptores Adrenérgicos beta 2/fisiología , Factor de Transcripción AP-1/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Células Cultivadas , Condrocitos/efectos de los fármacos , Colágeno Tipo II/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Placa de Crecimiento/citología , Placa de Crecimiento/efectos de los fármacos , Humanos , Isoproterenol/farmacología , Ratones , Embarazo , Proteínas Proto-Oncogénicas c-jun/agonistas , Proteínas Proto-Oncogénicas c-jun/antagonistas & inhibidores , ARN Interferente Pequeño/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Factores de Transcripción SOXD/genética , Factores de Transcripción SOXD/metabolismo , Factor de Transcripción AP-1/agonistas , Factor de Transcripción AP-1/antagonistas & inhibidores
6.
Cell Biochem Funct ; 27(5): 269-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19384851

RESUMEN

Parathyroid hormone (PTH) regulation of mitogen-activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106-01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase-1 (MKP-1) resulted in 30-40% inhibition of pERK1/2; however MKP-1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c-Raf phosphorylation at serine 338 (ser(338)) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively-active c-Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor-c-Raf were seen when cells were treated with PTH(1-34) or PTH(1-31) analogues that stimulate cAMP, but not with PTH(3-34), PTH(7-34) or PTH(18-48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c-Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c-Raf activity and that stimulation of MKP-1 may contribute to maintaining pERK1/2 inhibition over prolonged time.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Osteoblastos/enzimología , Hormona Paratiroidea/farmacología , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Osteoblastos/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-raf/metabolismo , Factores de Tiempo
7.
J Cell Biochem ; 96(6): 1163-73, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16187314

RESUMEN

Normal endochondral bone development requires the coordination of chondrocyte proliferation and differentiation. Indian hedgehog (Ihh) is a morphogen produced by chondrocytes in the early stage of terminal differentiation and plays several key roles in this process. Ihh regulates growth of adjacent proliferative chondrocytes and can also regulate the rate of differentiation of chondrocytes indirectly through its stimulation of parathyroid hormone-related protein (PTHrP). In this review, we focus on recent studies that have identified new functions of Ihh and how Ihh itself is being regulated.


Asunto(s)
Desarrollo Óseo/fisiología , Condrocitos/metabolismo , Transactivadores/fisiología , Inductores de la Angiogénesis/metabolismo , Animales , Desarrollo Óseo/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Proliferación Celular , Proteínas Hedgehog , Humanos , Modelos Biológicos , Morfogénesis/fisiología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Transducción de Señal/fisiología , Transactivadores/farmacología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA