Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 305(7): 1672-1681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34708578

RESUMEN

Effective therapeutics are not available for acute lung injury (ALI) and acute respiratory distress syndrome. Modified Xiaoqinglong decoction (M-XQL) is reported to effectively treat pneumonia, but the underlying mechanisms are unclear. In this study, the therapeutic effect and mechanism of M-XQL were examined using a lipopolysaccharide (LPS)-induced ALI mouse model. The effects of M-XQL on lung injury, inflammatory responses, and cell apoptosis were analyzed. Additionally, high-throughput sequencing was performed to evaluate the therapeutic mechanism of M-XQL. Pretreatment with M-XQL significantly and dose-dependently mitigated the pathological changes and upregulation of pulmonary, nitric oxide content and cell apoptosis and serum tumor necrosis factor-alpha contents in the LPS-induced ALI mouse model. RNA sequencing analysis revealed that the expression of several arachidonic acid metabolism-associated genes in the LPS + high-dose M-XQL group differed from that in the LPS group. In particular, the Cbr2, Cyp4f18, and Cyp2e1 levels were upregulated, whereas the Alox12, Ptges, and Ptges2 levels were downregulated in the LPS + high-dose M-XQL group. These results suggest that M-XQL exerts therapeutic effects in ALI mice by regulating arachidonic acid metabolism and exerting anti-apoptotic and anti-inflammatory effects. Thus, M-XQL is a potential agent for the clinical treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Araquidónico/metabolismo , Ácido Araquidónico/farmacología , Ácido Araquidónico/uso terapéutico , Lipopolisacáridos/toxicidad , Pulmón/metabolismo , Ratones
2.
PeerJ ; 9: e11892, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34414033

RESUMEN

OBJECTIVE: To investigate the replication of influenza A virus A/Puerto Rico/8/34 (H1N1) in pulmonary microvascular endothelial cells and its effect on endothelial barrier function. METHODS: Human pulmonary microvascular endothelial cells were infected with influenza A/Puerto Rico/8/34 (H1N1) virus. Plaque reduction assay, real-time quantitative PCR, immunofluorescence staining, and western blot were used to elucidate the replication process of virus-infected endothelial cells. In addition, real-time quantitative PCR was used to detect the relative expression levels of mRNA of some inflammatory factors. The endothelial resistance assay was used to determine the permeability of the endothelial monolayer. Excavation and analysis of data from open databases, such as the GeneCards database, DAVID Bioinformatics Resources, STRING search tool, and DGIdb database determined the genes, proteins, and signal pathways related to microvascular leakage caused by the H1N1 virus, and predicted the drugs that could be effective for treatment. RESULTS: In vitro experiments showed that the influenza virus can infect endothelial cells, leading to a significant increase in the permeability of pulmonary microvascular endothelial cells and the release of pro-inflammatory cytokines, but does not efficiently replicate in endothelial cells. A total of 107 disease-related target genes were obtained from the Gene-cards database. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these genes mainly affected the pathways related to "Inflammatory bowel disease" (IBD), "Chagas disease" (American trypanosomiasis), "Influenza A", and also played a key role in anti-inflammation and regulation of immunity. After enrichment analysis, 46 hub genes were screened. A total of 42 FDA-approved drugs corresponding to the hub genes were screened from the DGIdb database, and these could be formulated for topical application. In addition, these drugs can be used to treat other diseases, including cancer, inflammatory diseases, immune system disorders, and cardiovascular diseases. CONCLUSION: H1N1 influenza virus affects the barrier function of endothelial cells indirectly. Combined with bioinformatics tools, we can better understand the possible mechanism of action of influenza A (H1N1) virus causing pulmonary microvascular leakage and provide new clues for the treatment of pulmonary microvascular leakage.

3.
Front Pharmacol ; 12: 657826, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33927632

RESUMEN

Influenza A virus (IAV) poses a severe threat to human health and is a major public health problem worldwide. As global anti-influenza virus drug resistance has increased significantly, there is an urgent need to develop new antiviral drugs, especially drugs from natural products. Isoimperatorin, an active natural furanocoumarin, exhibits a broad range of pharmacologic activities including anticoagulant, analgesic, anti-inflammatory, antibacterial, anti-tumor, and other pharmacological effects, so it has attracted more and more attention. In this study, the antiviral and mechanistic effects of isoimperatorin on influenza A virus in vitro were studied. Isoimperatorin illustrated a broad-spectrum antiviral effect, especially against the A/FM/1/47 (H1N1), A/WSN/33 (H1N1, S31N, amantadine resistant), A/Puerto Rico/8/34 (H1N1), and A/Chicken/Guangdong/1996 (H9N2) virus strains. The experimental results of different administration modes showed that isoimperatorin had the best antiviral activity under the treatment mode. Further time-of-addition experiment results indicated that when isoimperatorin was added at the later stage of the virus replication cycle (6-8 h, 8-10 h), it exhibited an effective antiviral effect, and the virus yield was reduced by 81.4 and 84.6%, respectively. In addition, isoimperatorin had no effect on the expression of the three viral RNAs (mRNA, vRNA, and cRNA). Both the neuraminidase (NA) inhibition assay and CETSA demonstrated that isoimperatorin exerts an inhibitory effect on NA-mediated progeny virus release. The molecular docking experiment simulated the direct interaction between isoimperatorin and NA protein amino acid residues. In summary, isoimperatorin can be used as a potential agent for the prevention and treatment of influenza A virus.

4.
Front Public Health ; 9: 648612, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842425

RESUMEN

Background: Gender plays a significant role in the selection of medical specialty. Few studies have been conducted to explore the impact of gender differences on specialty choosing among Chinese medical students. Methods: The specialty choices of 648 students from six consecutive classes in an 8-year MD program were collected and compared between male and female students. A total of 110 students from one graduating class were surveyed by a questionnaire covering 22 career influencing factors. Each factor has a scale of zero to three (zero = no influence, one = mild influence, two = moderate influence, and three = strong influence). Results: Statistically significant gender differences were observed in 10 out of 16 specialties. Most male students limited their specialty choices to surgery (64%), internal medicine (12%), and orthopedics (12%), compared with a relatively diversified pattern in female students. For male students, the top three influencing factors were personal interest, future job prospects for the chosen specialty, and job opportunity in academic medicine. The strongest influencing factors of females were personal interest, specialty-specific knowledge and skills, and the sense of achievement. The expected salary was ranked among the top 10 influencing factors in male but not in females, while the work-life balance was ranked among the top 10 factors in females but not in males. Conclusion: There is a significant gender difference regarding specialty choices among Chinese medical students. Career coaching is needed to help students in their specialty choosing process.


Asunto(s)
Medicina , Estudiantes de Medicina , Selección de Profesión , China , Femenino , Humanos , Masculino , Facultades de Medicina , Caracteres Sexuales
5.
Arch Pharm Res ; 43(5): 489-502, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32248350

RESUMEN

Curcumin derivatives have been shown to inhibit replication of human influenza A viruses (IAVs). However, it is not clear whether curcumin and its derivatives can inhibit neuraminidase (NA) of influenza virus. In this study, a meaningful 3D quantitative structure-activity relationship model (comparative molecular field analysis R2 = 0.997, q2 = 0.527, s = 0.064, F = 282.663) was built to understand the chemical-biological interactions between their activities and neuraminidase. Molecular docking was used to predict binding models between curcumin derivatives and neuraminidase. Real-time polymerase chain reactions showed that the five active curcumin derivatives might have direct effects on viral particle infectivity in H1N1-infected lung epithelial (MDCK) cells. Neuraminidase activation assay showed that five active curcumin derivatives decreased H1N1-induced neuraminidase activation in MDCK cells. Indirect immunofluorescence assay indicated that two active curcumin derivatives (tetramethylcurcumin and curcumin) down-regulated the nucleoprotein expression. Curcumin inhibited IAV in vivo. The therapeutic mechanism of curcumin in the treatment of influenza viral pneumonia is related to improving the immune function of infected mice and regulating secretion of tumor necrosis-α, interleukin-6, and interferon-γ. These results indicate that curcumin derivatives inhibit IAV by blocking neuraminidase in the cellular model and curcumin also has anti-IAV activity in the animal model.


Asunto(s)
Antivirales/farmacología , Curcumina/farmacología , Inhibidores Enzimáticos/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa , Animales , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Perros , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuraminidasa/metabolismo
6.
Arch Virol ; 162(6): 1661-1669, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28243801

RESUMEN

Ribavirin is a broad-spectrum antiviral agent that is used against RNA and DNA viruses and has been reported to inhibit infection by influenza A and B virus in vitro and in vivo. Studies have shown that ribavirin can lower convalescent antibody titers in young children hospitalized with influenza. Here, we report that ribavirin administration in juvenile mice significantly attenuated respiratory immune responses, production of total IgA and hemagglutinin (HA)-specific secretory IgA responses on the mucosal surface. In contrast, systemic IgG and IgA responses were not affected. Ribavirin significantly suppressed toll-like receptor 2 and 4 expression in the lung and decreased the level of IL-1ß, IL-6, TNF-α, and IFN-γ in lung tissues of mice infected with influenza virus. Our findings suggest ribavirin appears to be able to inhibit viral replication and, as a result, TLR and cytokine expression are not up-regulated, attenuating inflammation as well as the respiratory tract's immune response.


Asunto(s)
Antivirales/administración & dosificación , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Sistema Respiratorio/efectos de los fármacos , Ribavirina/administración & dosificación , Replicación Viral/efectos de los fármacos , Animales , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Interferón gamma/genética , Interleucina-1beta/genética , Interleucina-6/genética , Pulmón/inmunología , Pulmón/virología , Ratones , Sistema Respiratorio/inmunología , Receptor Toll-Like 2/efectos de los fármacos , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/efectos de los fármacos , Receptor Toll-Like 4/genética , Factor de Necrosis Tumoral alfa/genética
7.
J Med Virol ; 89(7): 1158-1167, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27966790

RESUMEN

It is need for development of new means against influenza virus due to the lack of efficacy of available therapeutic strategies. In previous research, 1,8-cineol exert its inhibition of nuclear factor (NF)-κB, the main regulator of cytokine and chemokine production in influenza, and anti-inflammatory activity. These fact supports and helps establish the hypothesis that 1,8-cineol may have synergism with an antiviral on influenza virus infection. The combined effect of 1,8-cineol with oseltamivir in a mouse type A influenza virus (Victoria/3/75,H3N2) model were examined. We initially tested combinations of 1,8-cineol (30, 60, and 120 mg/kg/day) and oseltamivir (0.1, 0.2, and 0.4 mg/kg/day). In addition, the 0.4 mg/kg/day of oseltamivir combined with 120 mg/kg of 1,8-cineol was selected for further combination studies. Oseltamivir was 30%, 40%, and 60% protective at 0.1, 0.2, and 0.4 mg/kg/d. Combinations of 1,8-cineol (30, 60, and 120 mg/kg/d) and oseltamivir (0.1, 0.2, and 0.4 mg/kg/d) increased the number of survivors and mean survival time (MST) following combination treatment was greater than monotherapy alone. Three dimensional analysis of drug interactions using the MacSynergy method showed a strong synergistic effect of these drug combinations. Survival, MST, lung parameters (lung index, viral titers, and pathology), and cytokines (IL-10, TNF-α, IL-1ß, and IFN-γ) expression in lung demonstrated the high effectiveness of the combination. Combined treatment was associated with longer MST and more reduced cytokine levels than oseltamivir alone. These data demonstrate that combinations of 1,8-cineol and oseltamivir have synergistic effect against influenza A virus (H3N2) infection.


Asunto(s)
Antivirales/uso terapéutico , Ciclohexanoles/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Monoterpenos/uso terapéutico , Oseltamivir/uso terapéutico , Animales , Antivirales/administración & dosificación , Ciclohexanoles/administración & dosificación , Citocinas/efectos de los fármacos , Citocinas/genética , Citocinas/inmunología , Sinergismo Farmacológico , Quimioterapia Combinada , Eucaliptol , Humanos , Gripe Humana/virología , Interleucina-10/genética , Interleucina-10/inmunología , Pulmón/inmunología , Pulmón/virología , Ratones , Monoterpenos/administración & dosificación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Oseltamivir/administración & dosificación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA